Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The motor program that drives the swimming behavior of the marine mollusk Tritonia diomedea is generated by three interneuronal populations in the cerebral ganglia. One of these populations, the pair of C2 neurons, is shown to also exert powerful synaptic actions upon most cells in the contralateral pedal ganglion. Intracellular staining with Co2+ showed that the C2 neurons projected to the contralateral pedal ganglion as a single unbranched axon, and nearly all contralateral pedal neurons received monosynaptic input from C2. Orthodromic stimulation of most peripheral nerves caused monosynaptic excitation of C2 by afferent sensory cells and, in some cases, monosynaptic inhibition from an unidentified source. C2 neurons produced four types of postsynaptic potential (PSP) on pedal neurons: (1) a fast, Cl- -mediated inhibition (FIPSP); (2) a fast, Na+ -mediated excitation (FEPSP); (3) a slow, K+ -mediated inhibition (SIPSP); and (4) a slow, conductance-decrease excitation (SEPSP). All four could be recorded simultaneously in some pedal neurons. The C2 neurons appear to be high-order, multiaction neurons involved in both the generation of a complex motor program and the coordination of ancillary neuronal activity.

Original publication

DOI

10.1002/neu.480130306

Type

Journal

Journal of neurobiology

Publication Date

05/1982

Volume

13

Pages

251 - 266

Keywords

Neurosecretory Systems, Central Nervous System, Interneurons, Motor Neurons, Peripheral Nerves, Synapses, Animals, Mollusca, Electric Stimulation, Action Potentials, Swimming, Coloring Agents