Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Abstract Whole-genome sequencing has facilitated genome-wide analyses of association, prediction and heritability in many organisms. However, such analyses in bacteria are still in their infancy, being limited by difficulties including genome plasticity and strong population structure. Here we propose a suite of methods including linear mixed models, elastic net and LD-score regression, adapted to bacterial traits using innovations such as frequency-based allele coding, both insertion/deletion and nucleotide testing and heritability partitioning. We compare and validate our methods against the current state-of-art using simulations, and analyse three phenotypes of the major human pathogen Streptococcus pneumoniae, including the first analyses of minimum inhibitory concentrations (MIC) for penicillin and ceftriaxone. We show that the MIC traits are highly heritable with high prediction accuracy, explained by many genetic associations under good population structure control. In ceftriaxone MIC, this is surprising because none of the isolates are resistant as per the inhibition zone criteria. We estimate that half of the heritability of penicillin MIC is explained by a known drug-resistance region, which also contributes a quarter of the ceftriaxone MIC heritability. For the within-host carriage duration phenotype, no associations were observed, but the moderate heritability and prediction accuracy indicate a moderately polygenic trait.

Original publication

DOI

10.1093/nargab/lqac011

Type

Journal

NAR Genomics and Bioinformatics

Publisher

Oxford University Press (OUP)

Publication Date

13/01/2022

Volume

4