Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The production of χ_{c1}(3872) and ψ(2S) hadrons is studied as a function of charged particle multiplicity in pp collisions at a center-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 2  fb^{-1}. For both states, the fraction that is produced promptly at the collision vertex is found to decrease as charged particle multiplicity increases. The ratio of χ_{c1}(3872) to ψ(2S) cross sections for promptly produced particles is also found to decrease with multiplicity, while no significant dependence on multiplicity is observed for the equivalent ratio of particles produced away from the collision vertex in b-hadron decays. This behavior is consistent with a calculation that models the χ_{c1}(3872) structure as a compact tetraquark. Comparisons with model calculations and implications for the binding energy of the χ_{c1}(3872) state are discussed.

Original publication

DOI

10.1103/physrevlett.126.092001

Type

Journal

Physical review letters

Publication Date

03/2021

Volume

126

Addresses

Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands.

Keywords

LHCb Collaboration