COMRU.

AMR surveillance in LMICs: The pressing need for quality laboratory data

Paul Turner

Cambodia Oxford Medical Research Unit, Angkor Hospital for Children

Antimicrobial Resistance

For the purposes of this talk:

AMR = non-susceptibility of rapidly growing clinically-relevant bacteria to antimicrobial agents

(i.e. the organisms that WHO GLASS are interested in, not TB etc.)

Why do AMR surveillance?

- To estimate burden of disease
- To characterise trends in space and time
- To serve as benchmark to measure the impact of interventions
- To provide local evidence for empiric treatment guidelines and clinical decision making

Why are we involved: Clinical microbiology in SE Asia

The AMR problem...

ESSAY

Will 10 Million People Die a Year due to Antimicrobial Resistance by 2050?

Marlieke E. A. de Kraker¹*, Andrew J. Stewardson², Stephan Harbarth¹

Infection Control Program, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland,
Infectious Diseases Department, Austin Health, Heidelberg, Australia

• Current global estimates of the burden of AMR are not very informative; we need detailed, reliable data to be able to improve AMR control measures, preferably based on comprehensive, population-based surveillance data from low-, middle-, and high-income countries.

... is hard to define

Improving the estimation of the global burden of antimicrobial resistant infections

Direk Limmathurotsakul, Susanna Dunachie, Keiji Fukuda, Nicholas A Feasey, Iruka N Okeke, Alison H Holmes, Catrin E Moore, Christiane Dolecek, H Rogier van Doorn, Nandini Shetty, Alan D Lopez, Sharon J Peacock, Surveillance and Epidemiology of Drug Resistant Infections Consortium (SEDRIC)

Panel: Key actions to improve the estimation of the global burden of AMR infections

Strengthen health systems

- Increase country capability and capacity to:
 - Reliably detect the global priority list of AMR bacteria reported by WHO
 - Document clinical outcomes and link to laboratory data

Lancet Inf Dis (2019)

WHO Global AMR Surveillance System

GLASS is a platform for global data sharing on AMR worldwide

Specimen-based denominator

- Desire to have case-based surveillance •
- Trying to avoid just isolate-based data ٠

Thailand

Population 69,626 (2019)

Select Country

Thailand

Data Overview

Number of tested patients

Number of infected patients

Specimen t	Community origin	Hospital origin	Unknown origin	Specimen type	Pathogen name	Community origin	Hospital origin	Unknown origin
BLOOD	27524	6199	110			-	-	4
GENITAL	3578	202	1	BLOOD	Acinetobacter spp.	156	220	1
STOOL	1529	530	N.R.		E. coli	996	134	1
URINE	16894	5502	25		K. pneumoniae	354	124	2
					S. aureus	308	117	1
N.R. : Not Rep	orted				S. pneumoniae	105	4	
					Salmonella spp.	84	21	1
				GENITAL	N. gonorrhoeae	170		
				STOOL	Salmonella spp.	375		
					Shigella spp.	18		
				URINE	E. coli	2,563	754	5
					K. pneumoniae	645	334	

*

Enrolment unit

Country ٠

Brazil

Population 211,050 (2019)

Select Country

Brazil

Number of infected patients

Data Overview

Number of tested patients

Specimen t	Community origin	Hospital origin	Unknown origin
BLOOD	27	1055	N.R.
URINE	1051	9148	N.R.

N.R. : Not Reported

Specimen type	Pathogen name	Community origin	Hospital origin	Unknown origin
BLOOD	Acinetobacter spp.	3	29	
	E. coli	12	100	
	K. pneumoniae		90	
	S. aureus		90	
URINE	E. coli	446	2,254	
	K. pneumoniae	14	385	

LMICs – often not so many (good) microbiology laboratories

Population by province

Laboratory coverage by province

Challenges of Maintaining Good Clinical Laboratory Practices in Low-Resource Settings

A Health Program Evaluation Framework Case Study From East Africa

Helen L. Zhang,¹ Michael W. Omondi, MSc,² Augustine M. Musyoka, MSc,^{3,4} Isaac A. Afwamba,³ Remigi P. Swai,³ Francis P. Karia, MPH/MBA,^{3,4} Charles Muiruri, MPH,² Elizabeth A. Reddy, MD,⁵ John A. Crump, MD,^{1-4,6} and Matthew P. Rubach, MD¹

Service provision hampered by:

- Delays in biomedical engineer support
- Delays and extra costs in commodity procurement
- Low testing throughput
- High personnel turnover

LMICs – often not so many (busy) microbiology laboratories

Am. J. Trop. Med. Hyg., 97(4), 2017, pp. 1257–1261 doi:10.4269/ajtmh.17-0193 Copyright © 2017 by The American Society of Tropical Medicine and Hygiene

Capacity and Utilization of Blood Culture in Two Referral Hospitals in Indonesia and Thailand

Nittaya Teerawattanasook,¹ Patricia M. Tauran,² Prapit Teparrukkul,¹ Vanaporn Wuthiekanun,³ David A. B. Dance,^{4,5,6} Mansyur Arif,² and Direk Limmathurotsakul^{3,5,7}*

Angkor Hospital for Children

Emerg Inf Dis (2018)

Proportions of 3GCREC among patients with blood culture positive for *E. coli* (%)

Direk Limmathurotsakul MORU

Total

LMIC microbiology / AMR surveillance capacity building

Clinical bacteriology in low-resource settings: today's solutions

Sien Ombelet*, Jean-Baptiste Ronat*, Timothy Walsh, Cedric P Yansouni, Janneke Cox, Erika Vlieghe, Delphine Martiny, Makeda Semret, Olivier Vandenberg, Jan Jacobs, on behalf of the Bacteriology in Low Resource Settings working group†

- Availability of equipment and consumables adapted for use in low-resource settings
- Rationalised bacterial identification and antimicrobial susceptibility testing
- Communication between the laboratory and clinicians
- Prioritisation of clinically relevant specimens
- Provision of accessible and affordable training and reference materials
- Onsite validation and field adoption

BETA This is a new service - your feedback will help us to improve it.

@ 🔍

Search Site loading slowly? Click here

About Us | Grants & Funding | Regions & Countries | Knowledge & Resources | News & Events

We are a UK aid programme, helping low and middle income countries tackle antimicrobial resistance (AMR). Our aim is to improve the surveillance of AMR and generate relevant data that is shared nationally and globally.

About Us About AMR The Importance of Data

Lancet Inf Dis (2016)

AMR surveillance information flow

Using information technology to improve surveillance of antimicrobial resistance in South East Asia

Sirenda Vong and colleagues argue that investing in information technology surveillance systems to detect trends is an essential first step in tackling antimicrobial resistance in South East Asian countries

- Lack of IT infrastructure is often cited as a barrier to comprehensive AMR surveillance and antibiotic usage stewardship programmes in LMICs
- Few open access software options that might support an IT infrastructure for AMR surveillance are available

How do labs store and share data?

An online survey to collect information on laboratory data management

• 5th March and 29th April 2019

The intention was to capture one response per laboratory from 50 – 100 diagnostic microbiology laboratories in LMICs

Sampling was purposive

• Organisations and colleagues known to be working in, or associated with, such laboratories

Liz Ashley LOMWRU

Storage of laboratory test result data

Does your laboratory routinely store test results electronically?

<1/2 recorded all results electronically

Primary system used for storage of laboratory data

Only 1/3 had a dedicated lab information management system

AMR surveillance information flow

Lancet Inf Dis (in press)

We need a better LIMS – fit for LMICs

- Needs to include microbiology-specific functionality
 - Multiple results are generated per specimen
 - Tests are added dynamically based on initial microscopic and culture findings
 - Result reporting is complex
 - Bacterial nomenclature changes over time
 - Periodic generation of antibiograms
- Intuitive to use but with excellent support
- Deployable in a range of settings / IT infrastructures
 - Single machine
 - Local server
 - Cloud
- Should not cost US\$25,000 (or more) + annual maintenance costs
 - Must be free AND open source
 - Developers need to have funding for on-going development

Nick Feasey MLW

Susie Dunachie Oxford

Analytics – make it simple

Dashboards - ACORN

baumannii						•	Combine Suscept	tible + Intermediate
		Ceftazidime						6
coli	3rd generation cephalospori							27
tal of		Aggregate 3rd gen. ceph.						27
solates	4th generation cephalospori	15 Cefepime						21
	Aminoglycosides	Gentamicin						27
oneumoniae		Ertapenem						21
	Carbapenems	Imipenem					_	21
iureus	Carbapeneiris	Meropenem						27
neumoniae		Aggregate Carbapenems						27
neumoniae		Ciprofloxacin						27
monella species	Fluoroquinolones	Levofloxacin						21
		Aggregate Fluoroquinolones	_					27
ner Organisms	Folate antagonists	Trimethoprim/Sulfamethoxazole						27
	Monobactams	Aztreonam						21
		Amoxicillin/Clavulanic acid	_					27
	Penicillins	Ampicillin						27
	Phermody	Piperacillin/Tazobactam Chloramphenicol						21
	Other	Nitrofurantoin						2/
	Other	Netrolurantoin						
			0 10	20 30	40 50	60 70 %	80 90	100 110
			Susceptible	Intermediate	Resistant			
	Resistance to Carbap	enems Over Time						
	4	2 9	9	3	6	15	15	6 ≡
	100							
	¥ 50							
	≫ 50							
	× 50 —							
	50							
	аё 50 0Dec=19	jan-20 Feb-2	0 Mar-26	Арг-20	 May-20	jun-20	jul-20	Aug-20

Automated reports - AMASS

www.acornamr.net / Well Open Res (2020)

J Med Int Res (2020)

Cherry Lim MORU

Published data quality...

Table 7 Percentage sensitivity patterns of most prevalent pathogens to selected antimicrobials

Organism	Antimicrobial	Adejuyigbe et al (20)	Muhe et al (27)	Mathur et al (37)	Panigrahi et al (39)	Darmstadt <i>et al</i> (35)	Tallur et al (41)
Escherichia	Amoxycillin (AMX)	60.0	_	_	_	_	_
coli	Ampicillin (AMP)	40.0	100.0	-	-	100.0	29.0
	Cefotaxime (CTX)	_	_	-	_	-	100.0
	Ceftazidime (CAZ)	_	100.0	_	_	100.0	_
	Ceftriaxone (CRO)	_	_	_	_	100.0	100.0
	Ciprofloxacin (CIP)	_	_	_	_	100.0	_
	Gentamicin (GEN)	80.0	100.0	_	_	100.0	71.0
	Imipenem (IMP)					100.0	_
Staphylococcus	Amoxycillin (AMX)	73.0	_	_	_	_	_
1 -						2.2	21.2
aureus	the	re are	issue	os to k	ne awa	-	
aureus		re are	issue	s to k	be awa	-	
aureus		re are	issue	s to k	be awa	-	
aureus	the	re are	issue	s to k	be awa	are of	<u> </u>
aureus	the		issue	s to k	be awa	are of	
Klebsiella	Gentamicin (GEN)	85.8			be awa	are of	
	Gentamicin (GEN) Imipenem (IMP)	85.8			De awa	are of	
Klebsiella	Gentamicin (GEN) Imipenem (IMP) Amoxycillin (AMX)	85.8			De awa	90.0 90.0 90.0	
Klebsiella	Gentamicin (GEN) Imipenem (IMP) Amoxycillin (AMX) Ampicillin (AMP)	85.8			De awa	90.0 90.0 90.0	 25.5
Klebsiella	Gentamicin (GEN) Imipenem (IMP) Amoxycillin (AMX) Ampicillin (AMX) Cefotaxime (CTX)	85.8 		- - - 10.0 -	- - - - - -	90.0 90.0 - - 0.0 -	 29.0 25.5 76.5
Klebsiella	Gentamicin (GEN) Imipenem (IMP) Amoycillin (AMX) Ampicillin (AMX) Ceftazidime (CTX) Ceftazidime (CAZ)	85.8 		 10.0 	- - - 22.0	90.0 90.0 90.0 - - 33.3	 29.0 25.5 76.5
Klebsiella	Gentamicin (GEN) Imipenem (IMP) Amoxycillin (AMX) Ampicillin (AMX) Ceftazidime (CAZ) Ceftriaxone (CRO)	85.8 		- - 10.0 - 71.4	- - - 22.0	90.0 90.0 90.0 - 0.0 - 33.3 33.3	 29.0 25.5 76.5

*Averages were taken when more than one variant's sensitivity patterns were reported.

Klebsiella pneumoniae

Appendix B. Intrinsic Resistance

						B1. <i>E</i>
Klebsiella	Amoxycillin (AMX)	0.0	_	_		$\overline{\ }$
species*	Ampicillin (AMP)	—	_	10.0	_	
	Cefotaxime (CTX)	_	—	_	_	
	Ceftazidime (CAZ)	_	_	_	22.0	
	Ceftriaxone (CRO)	—	—	71.4		
	Ciprofloxacin (CIP)	_	_	64.8	11.0	
	Gentamicin (GEN)	100.0	_	42.8	_	Orga
	Imipenem (IMP)	_		100.0		Citro
						Citro

Results look good?

- "For interpretation of AST results, CLSI guideline (version X) was followed"
- Nothing to worry about then...
- Keep reading the CLSI doc until page 218...
- Is this an isolated issue or part of a larger quality management problem?

B1. Enterobacteriaceae		
Antimicrobial Agent Organism	Ampicillin	
Citrobacter freundii	R	
Citrobacter koseri,	R	
<i>Citrobacter amalonaticus</i> group ^a		
Enterobacter cloacae complex ^b	R	
Escherichia coli	There is	5
Escherichia hermannii	R	
Hafnia alvei	R	_
Klebsiella (formerly	R	
Enterobacter) aerogenes		
Klebsiella pneumoniae,	R	
Klebsiella oxytoca, Klebsiella variicola		

Staphylococcus aureus

Staphylococcus	Amoxycillin (AMX)	73.0	—	—	—	—	—
aureus	Ampicillin (AMP)	_	—	—	—	0.0	21.0
	Cefotaxime (CTX)	—	—	—	—	_	—
	Ceftazidime (CAZ)	—	_	—	—	66.7	_
	Ceftriaxone (CRO)	—	—	—	—	90.0	_
	Ciprofloxacin (CIP)	—	—	—	—	80.0	-
	Gentamicin (GEN)	85.8	_	—	—	90.0	29.0
	Imipenem (IMP)	_	_	_	_	90.0	

How much MRSA: no cefoxitin / oxacillin results?

- Could just guess from the imipenem or ceftriaxone data?
- But how were these results generated?

Ceftazidime for *S. aureus:* might be ok 2/3 of the time...really?

Are these isolated issues or part of a larger quality management problem?

European Society of Clinical Microbiology and Infectious Diseases

Microbiology Investigation Criteria for Reporting Objectively: A framework for the reporting and interpretation of clinical microbiology data BMC Medicine. 2019;17(1): 70

Tackling antimicrobial resistance (AMR) is a Global Health priority

Poor quality data hampers efforts to understand the burden of AMR

Use the MICRO framework to enhance the quality and scientific reporting of clinical microbiology data:

- Increase data utility and comparability
- Improve AMR surveillance
- Facilitate meta-analyses
- Inform policy and interventions from local to global levels

To sum up...

 Laboratory-based AMR surveillance in LMICs is hampered by many things

- Local data management is a major road block to progress
 - Urgently need better LIMS and IT infrastructure to support this
 - User friendly analysis tools would unlock local data use
- Perhaps more focus on the local situation might improve uptake and usefulness of global surveillance
 - If we don't get the site level data sorted, then the global data will be wrong anyway

COMRU.

Thank you.

Cambodia Oxford Medical Research Unit Angkor Hospital for Children | Siem Reap | Cambodia

