Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

BackgroundThe first cases of extensively drug resistant gonorrhoea were recorded in the United Kingdom in 2018. There is a public health need for strategies on how to deploy existing and novel antibiotics to minimise the risk of resistance development. As rapid point-of-care tests (POCTs) to predict susceptibility are coming to clinical use, coupling the introduction of an antibiotic with diagnostics that can slow resistance emergence may offer a novel paradigm for maximising antibiotic benefits. Gepotidacin is a novel antibiotic with known resistance and resistance-predisposing mutations. In particular, a mutation that confers resistance to ciprofloxacin acts as the 'stepping-stone' mutation to gepotidacin resistance.AimTo investigate how POCTs detecting Neisseria gonorrhoeae resistance mutations for ciprofloxacin and gepotidacin can be used to minimise the risk of resistance development to gepotidacin.MethodsWe use individual-based stochastic simulations to formally investigate the aim.ResultsThe level of testing needed to reduce the risk of resistance development depends on the mutation rate under treatment and the prevalence of stepping-stone mutations. A POCT is most effective if the mutation rate under antibiotic treatment is no more than two orders of magnitude above the mutation rate without treatment and the prevalence of stepping-stone mutations is 1-13%.ConclusionMutation frequencies and rates should be considered when estimating the POCT usage required to reduce the risk of resistance development in a given population. Molecular POCTs for resistance mutations and stepping-stone mutations to resistance are likely to become important tools in antibiotic stewardship.

Original publication

DOI

10.2807/1560-7917.es.2020.25.43.1900210

Type

Journal

Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin

Publication Date

10/2020

Volume

25

Addresses

Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom.

Keywords

Humans, Neisseria gonorrhoeae, Gonorrhea, Anti-Bacterial Agents, Drug Resistance, Bacterial, Clinical Decision-Making, Point-of-Care Testing, United Kingdom