Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The aim of this research was to find the optimal Raman excitation wavelength to attain the largest possible sensitivity in deep Raman spectroscopy of breast tissue. This involved careful consideration of factors such as tissue absorption, scattering, fluorescence and instrument response function. The study examined the tissue absorption profile combined with Raman scattering and detection sensitivity at seven different, laser excitation wavelengths in the near infrared region of the spectrum. Several key scenarios in regards to the sample position within the tissue were examined. The highest Raman band visibility over the background ratio in respect to biological tissue provides the necessary information for determining the optimum laser excitation wavelength for deep tissue analysis using transmission Raman spectroscopy, including detection of breast calcifications. For thick tissues with a mix of protein and fat, such as breast tissue, 790-810 nm is concluded to be the optimum excitation wavelength for deep Raman measurements.

Original publication

DOI

10.1039/c6an00490c

Type

Journal

The Analyst

Publication Date

10/2016

Volume

141

Pages

5738 - 5746

Addresses

School of Physics and Astronomy, University of Exeter, Streatham Campus, EX4 4QL, Exeter, UK. nick.stone@exeter.ac.uk.

Keywords

Breast, Humans, Spectrum Analysis, Raman, Lasers, Light, Female