Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The human gut microbiota has been shown to be significantly perturbed by antibiotic use, while recovering to the pre-treatment state several weeks after short antibiotic exposure. The effects of antibiotics on the gut microbiota have however been mainly documented in high-income settings with lower levels of antibiotic resistance as compared to lower and middle income countries (LMIC). This study aimed to examine the long-term consequences of repeated exposure to commonly use antibiotics on the fecal microbiota of residents living in a low income setting with high prevalence of antibiotic resistance. Fecal samples from household individuals (n = 63) participating in a rural cohort in northern Vietnam were collected monthly for a period of 6 months. Using 16S V4 rRNA gene region amplicon sequencing and linear mixed-effects models analysis, we observed only a minor and transient effect of antibiotics on the microbial richness (ß = - 31.3, 95%CI = - 55.3, - 7.3, p = 0.011), while the microbial diversity was even less affected (ß = - 0.298, 95%CI - 0.686, 0.090, p = 0.132). Principal Component Analyses (PCA) did not reveal separation of samples into distinct microbiota-based clusters by antibiotics use, suggesting the microbiota composition was not affected by the antibiotics commonly used in this population. Additionally, the fecal microbial diversity of the subjects in our study cohort was lower when compared to that of healthy Dutch adults (median 3.95 (IQR 3.72-4.13) vs median 3.69 (IQR3.31-4.11), p = 0.028, despite the higher dietary fiber content in the Vietnamese as compared to western diet. Our findings support the hypothesis that frequent antibiotic exposure may push the microbiota to a different steady state that is less diverse but more resilient to disruption by subsequent antibiotic use.

Original publication

DOI

10.1038/s41598-022-24488-9

Type

Journal

Scientific reports

Publication Date

11/2022

Volume

12

Addresses

Oxford University Clinical Research Unit, Hanoi, Vietnam. bichvtn@oucru.org.

Keywords

Humans, Anti-Bacterial Agents, Cohort Studies, Adult, Vietnam, Gastrointestinal Microbiome, Asians