Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Background: Ebola Virus causes disease both in human and non-human primates especially in developing countries.  Materials and Methods: Here we studied the spread of Ebola virus in and hence obtained a system of equations comprising of eighteen equations which completely described the transmission of Ebola Virus in a population where control measures like vaccination, treatment, quarantine, isolation of infectious patients while on treatment and use of condom were incorporated and a major source of contacting the disease which is the traditional washing of dead bodies was also incorporated. We investigated the local stability of the disease-free equilibrium using the Jacobian approach and the global stability using the center manifold theorem. We also investigated the local and global stability of the endemic theorem by constructing a Lyapunov function using the LaSalle’s Invariant principle. Results: This modeled system of equations was analyzed, and result showed that the disease-free equilibrium where both local and globally stable and that the system exhibits a forward bifurcation. The endemic equilibrium also was showed to be stable when the reproduction number is greater than one. Conclusions: Furthermore, numerical simulations were carried out to further see the impacts of the various control measures on the various compartments of the population. Our graphs show that isolation is the best option for an infectious person to be treated to avoid the disease been spread further and leads to quicker and better recovery.

Original publication

DOI

10.21010/ajidv17i1.2

Type

Journal

African Journal of Infectious Diseases

Publisher

African Traditional Herbal Medicine Supporters Initiative (ATHMSI)

Publication Date

22/01/2023

Volume

17

Pages

10 - 26