Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

<jats:sec><jats:title>Objective</jats:title><jats:p>Most prognostic models for primary sclerosing cholangitis (PSC) are based on patients referred to tertiary care and may not be applicable for the majority of patients with PSC. The aim of this study was to construct and externally validate a novel, broadly applicable prognostic model for transplant-free survival in PSC, based on a large, predominantly population-based cohort using readily available variables.</jats:p></jats:sec><jats:sec><jats:title>Design</jats:title><jats:p>The derivation cohort consisted of 692 patients with PSC from the Netherlands, the validation cohort of 264 patients with PSC from the UK. Retrospectively, clinical and biochemical variables were collected. We derived the prognostic index from a multivariable Cox regression model in which predictors were selected and parameters were estimated using the least absolute shrinkage and selection operator. The composite end point of PSC-related death and liver transplantation was used. To quantify the models’ predictive value, we calculated the C-statistic as discrimination index and established its calibration accuracy by comparing predicted curves with Kaplan-Meier estimates.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>The final model included the variables: PSC subtype, age at PSC diagnosis, albumin, platelets, aspartate aminotransferase, alkaline phosphatase and bilirubin. The C-statistic was 0.68 (95% CI 0.51 to 0.85). Calibration was satisfactory. The model was robust in the sense that the C-statistic did not change when prediction was based on biochemical variables collected at follow-up.</jats:p></jats:sec><jats:sec><jats:title>Conclusion</jats:title><jats:p>The Amsterdam-Oxford model for PSC showed adequate performance in estimating PSC-related death and/or liver transplant in a predominantly population-based setting. The transplant-free survival probability can be recalculated when updated biochemical values are available.</jats:p></jats:sec>

Original publication

DOI

10.1136/gutjnl-2016-313681

Type

Journal

Gut

Publisher

BMJ

Publication Date

10/2018

Volume

67

Pages

1864 - 1869