Development of dynamic algorithms for empirical antibiotic treatment in the rural tropics

Project Overview

Fevers and respiratory infections are the most common reasons for seeking medical care in the community, and for subsequent prescription of antibiotics. In rural tropical settings, health workers have no diagnostic tools to determine which patients require antibiotics. Furthermore, when it is assumed that these are required, there is an absence of locally relevant empirical treatment guidelines to ensure that effective antibiotics are prescribed.

This project will link with a broader research agenda that is exploring the use of simple biomarker tests to help determine when antibiotics are required. In this project the student will lead on the development of dynamic empirical treatment guidelines that draw on available and emerging epidemiological and drug susceptibility data; this could supplement simple biomarker tests to determine not only when antibiotics are required, but which are most likely to be effective. The project will also involve the development of mobile technology based patient management algorithms that utilise these data, and pilot their implementation in village health workers in rural areas in Southeast Asia.

Training Opportunities

The project will be of a multidisciplinary nature, but most suitable for candidates with a strong background in data analytics and programming, and an interest in applying these skills to the context of global health. The student will benefit from further training in biostatistics and health economic modelling, as well as from opportunities to engage with microbiological and clinical investigations. The project will also require involvement in multi-centre clinical trials on CRP guided treatment, exposing the student to a variety of research environments.


Tropical Medicine & Global Health and Clinical Trials & Epidemiology


Project reference number: 826

Funding and admissions information


Name Department Institution Country Email
Professor Yoel Lubell Tropical Medicine Oxford University, Bangkok THA
Professor Nicholas PJ Day FMedSci FRCP Tropical Medicine Oxford University, Bangkok THA

Do NT, Ta NT, Tran NT, Than HM, Vu BT, Hoang LB, van Doorn HR, Vu DT, Cals JW, Chandna A, Lubell Y, Nadjm B, Thwaites G, Wolbers M, Nguyen KV, Wertheim HF. 2016. Point-of-care C-reactive protein testing to reduce inappropriate use of antibiotics for non-severe acute respiratory infections in Vietnamese primary health care: a randomised controlled trial. Lancet Glob Health, 4 (9), pp. e633-41. Read abstract | Read more

BACKGROUND: Inappropriate antibiotic use for acute respiratory tract infections is common in primary health care, but distinguishing serious from self-limiting infections is difficult, particularly in low-resource settings. We assessed whether C-reactive protein point-of-care testing can safely reduce antibiotic use in patients with non-severe acute respiratory tract infections in Vietnam. METHOD: We did a multicentre open-label randomised controlled trial in ten primary health-care centres in northern Vietnam. Patients aged 1-65 years with at least one focal and one systemic symptom of acute respiratory tract infection were assigned 1:1 to receive either C-reactive protein point-of-care testing or routine care, following which antibiotic prescribing decisions were made. Patients with severe acute respiratory tract infection were excluded. Enrolled patients were reassessed on day 3, 4, or 5, and on day 14 a structured telephone interview was done blind to the intervention. Randomised assignments were concealed from prescribers and patients but not masked as the test result was used to assist treatment decisions. The primary outcome was antibiotic use within 14 days of follow-up. All analyses were prespecified in the protocol and the statistical analysis plan. All analyses were done on the intention-to-treat population and the analysis of the primary endpoint was repeated in the per-protocol population. This trial is registered under number NCT01918579. FINDINGS: Between March 17, 2014, and July 3, 2015, 2037 patients (1028 children and 1009 adults) were enrolled and randomised. One adult patient withdrew immediately after randomisation. 1017 patients were assigned to receive C-reactive protein point-of-care testing, and 1019 patients were assigned to receive routine care. 115 patients in the C-reactive protein point-of-care group and 72 patients in the routine care group were excluded in the intention-to-treat analysis due to missing primary endpoint. The number of patients who used antibiotics within 14 days was 581 (64%) of 902 patients in the C-reactive protein group versus 738 (78%) of 947 patients in the control group (odds ratio [OR] 0·49, 95% CI 0·40-0·61; p<0·0001). Highly significant differences were seen in both children and adults, with substantial heterogeneity of the intervention effect across the 10 sites (I(2)=84%, 95% CI 66-96). 140 patients in the C-reactive protein group and 137 patients in the routine care group missed the urine test on day 3, 4, or 5. Antibiotic activity in urine on day 3, 4, or 5 was found in 267 (30%) of 877 patients in the C-reactive protein group versus 314 (36%) of 882 patients in the routine treatment group (OR 0·78, 95% CI 0·63-0·95; p=0·015). Time to resolution of symptoms was similar in both groups. Adverse events were rare, with no deaths and a total of 14 hospital admissions (six in the C-reactive protein group and eight in the control group). INTERPRETATION: C-reactive protein point-of-care testing reduced antibiotic use for non-severe acute respiratory tract infection without compromising patients' recovery in primary health care in Vietnam. Health-care providers might have become familiar with the clinical picture of low C-reactive protein, leading to reduction in antibiotic prescribing in both groups, but this would have led to a reduction in observed effect, rather than overestimation. Qualitative analysis is needed to address differences in context in order to implement this strategy to improve rational antibiotic use for patients with acute respiratory infection in low-income and middle-income countries. FUNDING: Wellcome Trust, UK, and Global Antibiotic Resistance Partnership, USA. Hide abstract

Lubell Y, Althaus T, Blacksell SD, Paris DH, Mayxay M, Pan-Ngum W, White LJ, Day NP, Newton PN. 2016. Modelling the Impact and Cost-Effectiveness of Biomarker Tests as Compared with Pathogen-Specific Diagnostics in the Management of Undifferentiated Fever in Remote Tropical Settings. PLoS ONE, 11 (3), pp. e0152420. Read abstract | Read more

BACKGROUND: Malaria accounts for a small fraction of febrile cases in increasingly large areas of the malaria endemic world. Point-of-care tests to improve the management of non-malarial fevers appropriate for primary care are few, consisting of either diagnostic tests for specific pathogens or testing for biomarkers of host response that indicate whether antibiotics might be required. The impact and cost-effectiveness of these approaches are relatively unexplored and methods to do so are not well-developed. METHODS: We model the ability of dengue and scrub typhus rapid tests to inform antibiotic treatment, as compared with testing for elevated C-Reactive Protein (CRP), a biomarker of host-inflammation. Using data on causes of fever in rural Laos, we estimate the proportion of outpatients that would be correctly classified as requiring an antibiotic and the likely cost-effectiveness of the approaches. RESULTS: Use of either pathogen-specific test slightly increased the proportion of patients correctly classified as requiring antibiotics. CRP testing was consistently superior to the pathogen-specific tests, despite heterogeneity in causes of fever. All testing strategies are likely to result in higher average costs, but only the scrub typhus and CRP tests are likely to be cost-effective when considering direct health benefits, with median cost per disability adjusted life year averted of approximately $48 USD and $94 USD, respectively. CONCLUSIONS: Testing for viral infections is unlikely to be cost-effective when considering only direct health benefits to patients. Testing for prevalent bacterial pathogens can be cost-effective, having the benefit of informing not only whether treatment is required, but also as to the most appropriate antibiotic; this advantage, however, varies widely in response to heterogeneity in causes of fever. Testing for biomarkers of host inflammation is likely to be consistently cost-effective despite high heterogeneity, and can also offer substantial reductions in over-use of antimicrobials in viral infections. Hide abstract

Lubell Y, Blacksell SD, Dunachie S, Tanganuchitcharnchai A, Althaus T, Watthanaworawit W, Paris DH, Mayxay M, Peto TJ, Dondorp AM, White NJ, Day NP, Nosten F, Newton PN, Turner P. 2015. Performance of C-reactive protein and procalcitonin to distinguish viral from bacterial and malarial causes of fever in Southeast Asia. BMC Infect. Dis., 15 pp. 511. Read abstract | Read more

BACKGROUND: Poor targeting of antimicrobial drugs contributes to the millions of deaths each year from malaria, pneumonia, and other tropical infectious diseases. While malaria rapid diagnostic tests have improved use of antimalarial drugs, there are no similar tests to guide the use of antibiotics in undifferentiated fevers. In this study we estimate the diagnostic accuracy of two well established biomarkers of bacterial infection, procalcitonin and C-reactive protein (CRP) in discriminating between common viral and bacterial infections in malaria endemic settings of Southeast Asia. METHODS: Serum procalcitonin and CRP levels were measured in stored serum samples from febrile patients enrolled in three prospective studies conducted in Cambodia, Laos and, Thailand. Of the 1372 patients with a microbiologically confirmed diagnosis, 1105 had a single viral, bacterial or malarial infection. Procalcitonin and CRP levels were compared amongst these aetiological groups and their sensitivity and specificity in distinguishing bacterial infections and bacteraemias from viral infections were estimated using standard thresholds. RESULTS: Serum concentrations of both biomarkers were significantly higher in bacterial infections and malaria than in viral infections. The AUROC for CRP in discriminating between bacterial and viral infections was 0.83 (0.81-0.86) compared with 0.74 (0.71-0.77) for procalcitonin (p < 0.0001). This relative advantage was evident in all sites and when stratifying patients by age and admission status. For CRP at a threshold of 10 mg/L, the sensitivity of detecting bacterial infections was 95% with a specificity of 49%. At a threshold of 20 mg/L sensitivity was 86% with a specificity of 67%. For procalcitonin at a low threshold of 0.1 ng/mL the sensitivity was 90% with a specificity of 39%. At a higher threshold of 0.5 ng/ul sensitivity was 60% with a specificity of 76%. CONCLUSION: In samples from febrile patients with mono-infections from rural settings in Southeast Asia, CRP was a highly sensitive and moderately specific biomarker for discriminating between viral and bacterial infections. Use of a CRP rapid test in peripheral health settings could potentially be a simple and affordable measure to better identify patients in need of antibacterial treatment and part of a global strategy to combat the emergence of antibiotic resistance. Hide abstract