Search results
Found 22572 matches for
Baricitinib – an anti-inflammatory treatment for rheumatoid arthritis– is being investigated in the RECOVERY trial, the world’s largest clinical trial of treatments for patients hospitalised with COVID-19, taking place in 177 hospital sites across the UK and with over 33,000 patients recruited so far. As an anti-inflammatory, baricitinib may block the signalling activity of cytokine molecules which contribute to the hyper-inflammatory state seen in severe COVID-19. It is thought that baricitinib may act also have some anti-viral activity. The other treatments currently being investigated in the RECOVERY trial are Regeneron’s antibody cocktail, Aspirin and Colchicine.
Rational Zika vaccine design via the modulation of antigen membrane anchors in chimpanzee adenoviral vectors
AbstractZika virus (ZIKV) emerged on a global scale and no licensed vaccine ensures long-lasting anti-ZIKV immunity. Here we report the design and comparative evaluation of four replication-deficient chimpanzee adenoviral (ChAdOx1) ZIKV vaccine candidates comprising the addition or deletion of precursor membrane (prM) and envelope, with or without its transmembrane domain (TM). A single, non-adjuvanted vaccination of ChAdOx1 ZIKV vaccines elicits suitable levels of protective responses in mice challenged with ZIKV. ChAdOx1 prME ∆TM encoding prM and envelope without TM provides 100% protection, as well as long-lasting anti-envelope immune responses and no evidence of in vitro antibody-dependent enhancement to dengue virus. Deletion of prM and addition of TM reduces protective efficacy and yields lower anti-envelope responses. Our finding that immunity against ZIKV can be enhanced by modulating antigen membrane anchoring highlights important parameters in the design of viral vectored ZIKV vaccines to support further clinical assessments.
The immunology of Zika Virus
Zika virus (ZIKV) was initially thought to cause only mild, self-limiting symptoms. However, recent outbreaks have been associated with the autoimmune disease Guillain-Barré syndrome and causally linked to a congenital malformation known as microcephaly. This has led to an urgent need for a safe and effective vaccine. A comprehensive understanding of the immunology of ZIKV infection is required to aid in the design of such a vaccine. Whilst details of both innate and adaptive immune responses to ZIKV are emerging, further research is needed. As immunopathogenesis has been implicated in poor outcomes following infection with the related dengue virus, identification of cross-reactive immune responses between flaviviruses and the impact they may have on disease progression is also of high importance.
Neutrophil Activation and Early Features of NET Formation Are Associated With Dengue Virus Infection in Human.
The involvement of the immune system in the protection and pathology of natural dengue virus (DENV) has been extensively studied. However, despite studies that have referred to activation of neutrophils in DENV infections, the exact roles of neutrophils remain elusive. Here, we explored the phenotypic and functional responses of neutrophils in a cohort of adult dengue patients. Results indicated that during an acute DENV infection, neutrophils up-regulate CD66b expression, and produce a more robust respiratory response as compared with that in convalescent or healthy individuals; this confirmed in vivo neutrophil activation during DENV infection. Spontaneous decondensation of nuclei, an early event of neutrophil extracellular trap (NET) formation, was also markedly increased in cells isolated from DENV-infected patients during the acute phase of the infection. In vitro incubation of NETs with DENV-2 virus significantly decreased DENV infectivity. Interestingly, increased levels of NET components were found in the serum of patients with more severe disease form-dengue hemorrhagic fever (DHF), but not uncomplicated dengue fever, during the acute phase of the infection. Levels of pro-inflammatory cytokines IL-8 and TNFα were also increased in DHF patients as compared with those in healthy and DF subjects. This suggested that NETs may play dual roles during DENV infection. The increased ability for NET formation during acute DENV infection appeared to be independent of PAD4-mediated histone H3 hyper-citrullination. Our study suggests that neutrophils are involved in immunological responses to DENV infection.
Evolution of neurovirulent Zika virus
A Zika virus mutation leads to increased neurovirulence
Covalently linked dengue virus envelope glycoprotein dimers reduce exposure of the immunodominant fusion loop epitope
AbstractA problem in the search for an efficient vaccine against dengue virus is the immunodominance of the fusion loop epitope (FLE), a segment of the envelope protein E that is buried at the interface of the E dimers coating mature viral particles. Anti-FLE antibodies are broadly cross-reactive but poorly neutralizing, displaying a strong infection enhancing potential. FLE exposure takes place via dynamic ‘breathing’ of E dimers at the virion surface. In contrast, antibodies targeting the E dimer epitope (EDE), readily exposed at the E dimer interface over the region of the conserved fusion loop, are very potent and broadly neutralizing. We here engineer E dimers locked by inter-subunit disulfide bonds, and show by X-ray crystallography and by binding to a panel of human antibodies that these engineered dimers do not expose the FLE, while retaining the EDE exposure. These locked dimers are strong immunogen candidates for a next-generation vaccine.
MAIT cells are activated during human viral infections
AbstractMucosal-associated invariant T (MAIT) cells are abundant in humans and recognize bacterial ligands. Here, we demonstrate that MAIT cells are also activated during human viral infections in vivo. MAIT cells activation was observed during infection with dengue virus, hepatitis C virus and influenza virus. This activation—driving cytokine release and Granzyme B upregulation—is TCR-independent but dependent on IL-18 in synergy with IL-12, IL-15 and/or interferon-α/β. IL-18 levels and MAIT cell activation correlate with disease severity in acute dengue infection. Furthermore, HCV treatment with interferon-α leads to specific MAIT cell activation in vivo in parallel with an enhanced therapeutic response. Moreover, TCR-independent activation of MAIT cells leads to a reduction of HCV replication in vitro mediated by IFN-γ. Together these data demonstrate MAIT cells are activated following viral infections, and suggest a potential role in both host defence and immunopathology.