Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

No one knows exactly why resistance to malaria drugs always emerges first in this remote western province of Cambodia, nestled in the Cardamom Mountains. “The reasons are as much social as biological,” says malariologist Tom Peto, who is here in this dusty, unremarkable-looking town battling the latest threat to global malaria control: multiple drug–resistant (MDR) malaria.

Young man behing a mosquito nest, in Southeast Asia
Migrant workers such as this man in Pailin, Cambodia, near the border with Thailand, are at especially high risk of contracting malaria. Jeffrey Lau

PAILIN, CAMBODIA—Whatever the reason, this is where it starts. Resistance to chloroquine surfaced here in the 1950s before sweeping through the wider Mekong region and then into India and Africa, causing millions of deaths. Sulfadoxine-pyrimethamine went next, in the 1960s. Mefloquine failed in the 1970s.

Then in late 2008 and 2009 came reports that rocked the malaria world: Artemisinin, the so-called wonder drug that has sent malaria deaths plummeting across the globe over the past decade, was losing its effectiveness here. That sparked global alarm and prompted an ultimately futile emergency plan to contain resistance in Cambodia before the last, best drug was lost.

Now, Pailin is the epicenter of what some say is the greatest threat yet to malaria control: the deadliest malaria parasite, Plasmodium falciparum, has become resistant not only to artemisinin, but to a key partner drug, piperaquine, or PPQ, that is used in combination with artemisinin and is critical to its success. The emergence of this MDR parasite is raising the specter of untreatable malaria in the Mekong region and perhaps beyond.

Similar stories

Are we getting tafenoquine dosing right?

Researchers analysing clinical trial data for the new antimalarial drug tafenoquine find that higher doses are needed to cure reliably vivax malaria infection.

New SMRU building opened in Thailand to provide health care to marginalized populations

The inauguration of a new joint Shoklo Malaria Research Unit (SMRU) and Borderland Health Foundation (BHF) Building took place in Mae Ramat, Thailand, this week.

Constant genetic surveillance necessary to keep multidrug-resistant malaria parasite strains in check, study finds

Continually monitoring malaria parasite populations is necessary to prevent outbreaks of previously dormant multidrug-resistant malaria strains, say University of Oxford researchers. Multidrug-resistant malaria parasite strains can rapidly grow or collapse in response to public health policy changes, say the researchers in a study published today in The Lancet.

Meta-analysis informed the updated WHO guidelines for treatment of uncomplicated malaria in the first trimester of pregnancy

A new WWARN meta-analysis, commissioned by the World Health Organization and which informed a change to its treatment guidelines, has been published in The Lancet. The study provides compelling evidence that artemether-lumefantrine should now replace quinine as the treatment of choice in the first trimester.

Bacterial infections linked to one in eight global deaths, according to GRAM study

Data showing 7.7 million deaths from 33 bacterial infections can guide measures to strengthen health systems, particularly in low-income settings

Combating drug-resistant malaria

MORU research has contributed to strategies to eliminate malaria in the Greater Mekong Sub-region, helping to prevent the spread of drug-resistant malaria and improving health provision and outcomes for remote communities.