Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The rapid decline in effectiveness of a widely used anti-malaria drug treatment on the Thailand-Myanmar border is linked to the increasing prevalence of specific mutations in the malaria parasite itself, according to a paper published in The Clinical infectious Disease Journal.

Researchers in a lab

22 June 2016, Mae Sot (Thailand) – The rapid decline in effectiveness of a widely used anti-malaria drug treatment on the Thailand-Myanmar border is linked to the increasing prevalence of specific mutations in the malaria parasite itself, according to a paper published in The Clinical infectious Disease Journal.

The mutations in specific regions of the parasite’s kelch gene – which are genetic markers of artemisinin resistance – were the decisive factor, the authors say, in the selection of parasites that are also resistant to mefloquine. This resulted in growing failure of the widely-used anti-malaria drug combination of mefloquine and artesunate, the first artemisinin combination therapy (ACT) on the Thai-Myanmar border.

Led by Dr. Aung Pyae Phyo of SMRU, the study used data from a 10-year study of 1,005 patients with uncomplicated P. falciparum malaria at Shoklo Malaria Research Unit (SMRU) clinics on the Thai-Myanmar border in northwest Thailand.

“This study demonstrates for the first time that artemisinin resistance leads to failure of the artemisinin partner drug, in this case, mefloquine. This means that the first line artemisinin combination therapy (ACT) introduced here in 1994 has finally fallen to resistance,” says François Nosten, Director of SMRU.

Resistance to artemisinin combination therapy drugs (ACTs) – the frontline treatments against malaria infection – poses a serious threat to the global control and eradication of malaria. If drug resistance spreads from Asia to the African sub-continent, or emerges in Africa independently, as has happened several times before, millions of lives, most of them children under the age of 5 in Africa, will be at risk.

The study shows that, contrary to the view sometimes expressed that resistance to artemisinin is not a direct threat, it is in fact responsible for the rapid demise of the partner drug and the failure of the drug combination, resulting in patients not being cured and further transmission of the malaria parasite.

"The evidence is clear: Artemisinin resistance leads to partner drug resistance and thereby the failure of artemisinin combination treatments,” said Oxford Professor Nicholas White, Chairman of the Mahidol Oxford Tropical Medicine Research Unit (MORU) and chair of the Worldwide Antimalarial Resistance Network (WWARN).

Given the very limited number of effective drugs, it is urgent to eliminate P. falciparum from the areas where it has developed resistance to the artemisinins, said Prof. White: "The spread of artemisinin resistant Plasmodium falciparum is perhaps the greatest threat to our current hopes of eliminating malaria from the world.”

A unit of the Bangkok-based MORU, SMRU is based in the refugee camps and migrant communities along the Thai-Myanmar border. Led by researchers based at SMRU (Thailand), the study was funded with the support of the Wellcome Trust (UK).

Reference:

Pyae Phyo A et al, Declining efficacy of artemisinin combination therapy against P. falciparum malaria on the Thai-Myanmar border (2003-2013): the role of parasite genetic factors, Clinical Infectious Diseases, published online 16 June 2016.

Authors and contributors: A. Pyae Phyo, E.A. Ashley, T.J. Anderson, Z. Bozdech, V.I. Carrara, K. Sriprawat, S. Nair, M.M. White, J. Dziekan, C. Ling, S. Proux, K. Konghahong, A. Jeeyapant, C.J. Woodrow, M. Imwong, R. McGready, K.M. Lwin, N.P. Day, N. J. White and F. Nosten.

Similar stories

Pint of Science Thailand is back, now online

MORU Public Engagement

Live and on-line from Bangkok! Be ready for Thursday 13th May, when Pint of Science Thailand will stream live from Bangkok. Join us via Facebook, YouTube or right here from the Pint of Science Thailand website as we journey from bacterial infections to viruses, discover how clinical trials work, and how scientific development is seen in the eyes of the law!

We gathered rich insights into child survival in Kenya by mapping patterns over 22 years

KWTRP Research

Although improvements in child survival globally have been remarkable, 5.2 million children still died in 2019, over half of these in sub-Saharan Africa. A range of factors likely include disparities in childhood immunisations, supplements and breastfeeding practices, antenatal care, skilled birth attendants working in healthcare facilities. Kenya needs to prioritise its child care plans, based on localities and populations with the greatest need. Two KWTRP studies give granular insights into the situation in regions across Kenya.

Innovative strategies for engaging communities with malaria research

MORU Public Engagement

For World Malaria Day 2021, F1000 Research Blog spoke to Professor Phaik Yeong Cheah about her research focussed on drama and arts-based community engagement for malaria research, published with Wellcome Open Research.

New project’s child-appropriate primaquine doses could have significant impact on global burden of malaria

MORU

On Sunday 25 April, World Malaria Day, the Developing Paediatric Primaquine (DPP) project will launch its website. DPP will produce children-appropriate primaquine doses that could both cut malaria deaths in vulnerable African children by blocking transmission of P. falciparum malaria and reduce P. vivax malaria more widely.

Risks of serious adverse events following treatment for visceral leishmaniasis

OCGHR Publication Research

This large-scale systematic review and meta-analysis aimed to collate all reported serious adverse events in visceral leishmaniasis clinical trials and quantify the incidence of mortality during the first 30 days of therapy. The analyses, which included clinical data from more than 35,000 patients, found that mortality following treatment was an extremely rare event and serious adverse events following treatments were poorly reported.

The RECOVERY Trial: One year on

OCGHR Research

The Randomised Evaluation of COVid-19 thERapY (RECOVERY) trial was officially launched on 23 March 2020. It is the world's largest COVID-19 drug trial. Thanks to the ground-breaking work of RECOVERY, clinicians treating patients hospitalised with severe COVID-19 now have two treatments that are known to improve survival.