Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The early picosecond time scale excited-state dynamics of the paradigm tris(2,2'-bipyridyl)Ruthenium(II) ([Ru(bpy)(3)](2+)) and related complexes have been examined by picosecond Kerr-gated time-resolved resonance Raman (ps-TR(3)) spectroscopy. The evolution of the signature Raman bands of the lowest thermally equilibrated excited (THEXI) state under two-color pump/probe conditions show that this state is not fully populated within several hundred femtoseconds as proposed previously but rather only within the first 20 ps following excitation. In addition to an emission observed within the instrument rise time (τ < 3 ps), the early picosecond dynamics are characterized by a rise in the intensity of the Raman marker bands of the THEXI-(3)MLCT state, a rise time which, within experimental uncertainty, is not influenced by either partial or complete ligand deuteriation or the presence of ligands other than bpy, as in the heteroleptic complexes [Ru(bpy)(2)(L1)](+) and [Ru(bpy)(2)(Hdcb)](+) (where H(2)dcb is 4,4'-dicarboxy-2,2'-bipyridine and L1 is 2,-(5'-phenyl-4'-[1,2,4]triazole-3'-yl)pyridine). Overall, although the results obtained in the present study are consistent with those obtained from examination of this paradigm complex on the femtosecond timescale, regarding initial formation of the vibrationally hot (3)MLCT state by ISC from the singlet Franck-Condon state, the observation that the THEXI-(3)MLCT state reaches thermal equilibration over a much longer time period than previously suggested warrants a re-examination of views concerning the rapidity with which thermal equilibration of transition metal complex excited states takes place.

Original publication





The journal of physical chemistry. A

Publication Date





4537 - 4544


National Centre for Sensors Research, Dublin City University, Dublin 9, Ireland.