Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Mono- and binuclear complexes of (Re(CO)3Cl) with dipyrido[2,3-a:3',2'-c]-6,7-dimethylphenazine (ppbMe2) were synthesised and their photophysical properties probed using picosecond time-resolved infrared spectroscopy (TRIR). Excitation of these complexes in solution at 400 nm produces short-lived excited states. The IR spectrum of the excited state of the mononuclear [Re(CO)3Cl(ppbMe2)] have nu(CO) bands shifted to higher wavenumber relative to those of the ground state. This is consistent with formation of a (3)MLCT excited state. The IR spectrum of the excited state of the bimetallic [(Re(CO)3Cl)2(micro-ppbMe2)] shows the formation of two distinct groups of nu(CO) bands. This is interpreted as the formation of two distinct Re sites arising from a localised MLCT state with formally oxidised Re centre and a formally reduced bridging ligand. The nu(CO) bands of the adjacent Re centre are affected by the reduction of the bridging ligand. On the IR timescale the excited state structure is best formulated as [Cl(CO)3Re(II)(micro-ppbMe2 *-)Re(I)(CO)3Cl].

Original publication





Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology

Publication Date





82 - 87


School of Chemistry, University of Nottingham, University Park, Nottingham, UK.


Rhenium, Organometallic Compounds, Pyridines, Phenazines, Ligands, Spectroscopy, Fourier Transform Infrared, Sensitivity and Specificity, Molecular Structure, Electrons, Light, Time Factors