Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We describe a simple methodology for the effective retrieval of Raman spectra of subsurface layers in diffusely scattering media. The technique is based on the collection of Raman scattered light from surface regions that are laterally offset away from the excitation laser spot on the sample. The Raman spectra obtained in this way exhibit a variation in relative spectral intensities of the surface and subsurface layers of the sample being investigated. The data set is processed using a multivariate data analysis to yield pure Raman spectra of the individual sample layers, providing a method for the effective elimination of surface Raman scatter. The methodology is applicable to the retrieval of pure Raman spectra from depths well in excess of those accessible with conventional confocal microscopy. In this first feasibility study we have differentiated between surface and subsurface Raman signals within a diffusely scattering sample composed of two layers: trans-stilbene powder beneath a 1 mm thick over-layer of PMMA (poly(methyl methacrylate)) powder. The improvement in contrast of the subsurface trans-stilbene layer without numerical processing was 19 times. The potential applications include biomedical subsurface probing of specific tissues through different overlying tissues such as assessment of bone quality through skin, providing an effective noninvasive means of screening for bone degeneration, other skeletal disease diagnosis, and dermatology studies, as well as materials and catalyst research.

Original publication

DOI

10.1366/0003702053641450

Type

Journal

Applied spectroscopy

Publication Date

04/2005

Volume

59

Pages

393 - 400

Addresses

Central Laser Facility, CCLRC Rutherford Appleton Laboratory, Didcot, Oxfordshire, OX11 0QX, United Kingdom.

Keywords

Polymethyl Methacrylate, Stilbenes, Tomography, Optical, Nephelometry and Turbidimetry, Spectrum Analysis, Raman, Sensitivity and Specificity, Feasibility Studies, Reproducibility of Results, Light, Scattering, Radiation