Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

© 2019 Walter de Gruyter GmbH, Berlin/Boston. Interrupted time series are increasingly being used to evaluate the population-wide implementation of public health interventions. However, the resulting estimates of intervention impact can be severely biased if underlying disease trends are not adequately accounted for. Control series offer a potential solution to this problem, but there is little guidance on how to use them to produce trend-adjusted estimates. To address this lack of guidance, we show how interrupted time series can be analysed when the control and intervention series share confounders, i. e. when they share a common trend. We show that the intervention effect can be estimated by subtracting the control series from the intervention series and analysing the difference using linear regression or, if a log-linear model is assumed, by including the control series as an offset in a Poisson regression with robust standard errors. The methods are illustrated with two examples.

Original publication

DOI

10.1515/em-2018-0010

Type

Journal

Epidemiologic Methods

Publication Date

01/01/2019