Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

OBJECTIVE:Definitions of virological response vary from <50 up to 1000 copies of HIV-RNA/mL. Our previous models estimate the probability of HIV drug combinations reducing the viral load to <50 copies/mL, with no indication of whether higher thresholds of response may be achieved. Here, we describe the development of models that predict absolute viral load over time. METHODS:Two sets of random forest models were developed using 50,270 treatment change episodes from more than 20 countries. The models estimated viral load at different time points following the introduction of a new regimen from variables including baseline viral load, CD4 count, and treatment history. One set also used genotypes in their predictions. Independent data sets were used for evaluation. RESULTS:Both models achieved highly significant correlations between predicted and actual viral load changes (r = 0.67-0.68, mean absolute error of 0.73-0.74 log10 copies/mL). The models produced curves of virological response over time. Using failure definitions of <100, 400, or 1000 copies/mL, but not 50 copies/mL, both models were able to identify alternative regimens they predicted to be effective for the majority of cases where the new regimen prescribed in the clinic failed. CONCLUSIONS:These models could be useful for selecting the optimum combination therapy for patients requiring a change in therapy in settings using any definition of virological response. They also give an idea of the likely response curve over time. Given that genotypes are not required, these models could be a useful addition to the HIV-TRePS system for those in resource-limited settings.

Original publication

DOI

10.1097/qai.0000000000001989

Type

Journal

Journal of acquired immune deficiency syndromes (1999)

Publication Date

06/2019

Volume

81

Pages

207 - 215

Addresses

The HIV Resistance Response Database Initiative (RDI), London, United Kingdom.