Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

IntroductionFluid resuscitation is a cornerstone of severe sepsis management, however there are many uncertainties surrounding the type and volume of fluid that is administered. The entire spectrum of coagulopathies can be seen in sepsis, from asymptomatic aberrations to fulminant disseminated intravascular coagulation (DIC). The aim of this study was to determine if fluid resuscitation with saline contributes to the haemostatic derangements in an ovine model of endotoxemic shock.Materials and methodsTwenty-one adult female sheep were randomly divided into no endotoxemia (n = 5) or endotoxemia groups (n = 16) with an escalating dose of lipopolysaccharide (LPS) up to 4 μg/kg/h administered to achieve a mean arterial pressure below 60 mmHg. Endotoxemia sheep received either no bolus fluid resuscitation (n = 8) or a 0.9% saline bolus (40 mL/kg over 60 min) (n = 8). No endotoxemia, saline only animals (n = 5) underwent fluid resuscitation with a 0.9% bolus of saline as detailed above. Hemodynamic support with vasopressors was initiated if needed, to maintain a mean arterial pressure (MAP) of 60-65 mm Hg in all the groups.ResultsRotational thromboelastometry (ROTEM®) and conventional coagulation biomarker tests demonstrated sepsis induced derangements to secondary haemostasis. This effect was exacerbated by saline fluid resuscitation, with low pH (p = 0.036), delayed clot initiation and formation together with deficiencies in naturally occurring anti-coagulants antithrombin (p = 0.027) and Protein C (p = 0.001).ConclusionsEndotoxemia impairs secondary haemostasis and induces changes in the intrinsic, extrinsic and anti-coagulant pathways. These changes to haemostasis are exacerbated following resuscitation with 0.9% saline, a commonly used crystalloid in clinical settings.

Original publication

DOI

10.1016/j.thromres.2019.02.015

Type

Journal

Thrombosis research

Publication Date

04/2019

Volume

176

Pages

39 - 45

Addresses

Critical Care Research Group, Prince Charles Hospital, Brisbane, Australia; University of Queensland, Brisbane, Australia. Electronic address: M.Passmore@uq.edu.au.

Keywords

Animals, Sheep, Endotoxemia, Disease Models, Animal, Fluid Therapy, Resuscitation, Hemostasis, Blood Pressure, Female, Saline Solution