Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND:Robust household sampling, commonly applied for population-based investigations, requires sampling frames or household lists to minimize selection bias. We have applied Google Earth Pro satellite imagery to constitute structure-based sampling frames at sites in Pikine, Senegal; Pietermaritzburg, South Africa; and Wad-Medani, Sudan. Here we present our experiences in using this approach and findings from assessing its applicability by determining positional accuracy. METHODS:Printouts of satellite imagery combined with Global Positioning System receivers were used to locate and to verify the locations of sample structures (simple random selection; weighted-stratified sampling). Positional accuracy was assessed by study site and administrative subareas by calculating normalized distances (meters) between coordinates taken from the sampling frame and on the ground using receivers. A higher accuracy in conjunction with smaller distances was assumed. Kruskal-Wallis and Dunn multiple pairwise comparisons were performed to evaluate positional accuracy by setting and by individual surveyor in Pietermaritzburg. RESULTS:The median normalized distances and interquartile ranges were 0.05 and 0.03-0.08 in Pikine, 0.09 and 0.05-0.19 in Pietermaritzburg, and 0.05 and 0.00-0.10 in Wad-Medani, respectively. Root mean square errors were 0.08 in Pikine, 0.42 in Pietermaritzburg, and 0.17 in Wad-Medani. Kruskal-Wallis and Dunn comparisons indicated significant differences by low- and high-density setting and interviewers who performed the presented approach with high accuracy compared to interviewers with poor accuracy. CONCLUSIONS:The geospatial approach presented minimizes systematic errors and increases robustness and representativeness of a sample. However, the findings imply that this approach may not be applicable at all sites and settings; its success also depends on skills of surveyors working with aerial data. Methodological modifications are required, especially for resource-challenged sites that may be affected by constraints in data availability and area size.

Original publication





Clinical infectious diseases : an official publication of the Infectious Diseases Society of America

Publication Date





S474 - S482


Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.