Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Results are reported from a search for the rare decays B_{s}^{0}→τ^{±}μ^{∓} and B^{0}→τ^{±}μ^{∓}, where the τ lepton is reconstructed in the channel τ^{-}→π^{-}π^{+}π^{-}ν_{τ}. These processes are effectively forbidden in the standard model, but they can potentially occur at detectable rates in models of new physics that can induce lepton-flavor-violating decays. The search is based on a data sample corresponding to 3  fb^{-1} of proton-proton collisions recorded by the LHCb experiment in 2011 and 2012. The event yields observed in the signal regions for both processes are consistent with the expected standard model backgrounds. Because of the limited mass resolution arising from the undetected τ neutrino, the B_{s}^{0} and B^{0} signal regions are highly overlapping. Assuming no contribution from B^{0}→τ^{±}μ^{∓}, the upper limit B(B_{s}^{0}→τ^{±}μ^{∓})<4.2×10^{-5} is obtained at 95% confidence level. If no contribution from B_{s}^{0}→τ^{±}μ^{∓} is assumed, a limit of B(B^{0}→τ^{±}μ^{∓})<1.4×10^{-5} is obtained at 95% confidence level. These results represent the first limit on B(B_{s}^{0}→τ^{±}μ^{∓}) and the most stringent limit on B(B^{0}→τ^{±}μ^{∓}).

Original publication





Physical review letters

Publication Date





Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands.


LHCb Collaboration