Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

PURPOSE OF REVIEW: This review addresses the changing patterns of antimicrobial resistance in Salmonella. RECENT FINDINGS: Resistance to chloramphenicol, amicillin and cotrimoxazole is common in Salmonella Typhi and Paratyphi A in Asia and a few countries of Africa. In some countries, the isolation of multidrug resistant strains appears to be declining. R-type ACSSuT Salmonella Typhimurium DT104 is common in animal and human infections in many industrialized countries. Strains with additional trimethoprim and low-level ciprofloxacin resistance are increasingly seen. Resistance is appearing in new Typhimurium phage types, such as DT204b, and is common in serotypes Hadar and Virchow but not Enteritidis. A variety of Ambler class A and class C beta-lactamase enzymes have now been described causing extended spectrum cephalosporin resistance in different Salmonella serotypes. The overall level of extended spectrum cephalosporin resistance currently appears low. Low-level ciprofloxacin resistance, associated with point mutations in the gyrA gene, is inceasingly common in typhoidal and non-typhoidal serotypes isolated from humans and animals and has been associated with treatment failures. Sporadic reports describe human infections with non-Typhi Salmonella that are fully fluoroquinolone resistant. There is increasing support for the call to revise the fluoroquinolone breakpoints for Salmonella. A study from Denmark suggested that infections with drug resistant Salmonellae are associated with a poorer outcome than drug susceptible infections. SUMMARY: Resistance is increasing to several critical antimicrobials used to treat invasive salmonellosis including extended spectrum cephalosporins and quinolones. In resource poor countries, such drug resistant Salmonella infections may become effectively untreatable.

Original publication





Curr Opin Infect Dis

Publication Date





467 - 472


Anti-Infective Agents, Drug Resistance, Microbial, Fluoroquinolones, Humans, Salmonella Infections, Salmonella enterica