Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

<jats:p>Tracking antimalarial drug use and efficacy is essential for monitoring the current spread of antimalarial drug resistance. However, available methods for determining tablet quality and patient drug use are often inaccessible, requiring well-equipped laboratories capable of performing liquid chromatography–mass spectrometry (LC-MS). Here, we report the development of aptamer-based fluorescent sensors for the rapid, specific detection of the antimalarial compounds piperaquine and mefloquine—two slow-clearing partner drugs in current first-line artemisinin-based combination therapies (ACTs). Highly selective DNA aptamers were identified that bind piperaquine and mefloquine with dissociation constants (<jats:italic>K</jats:italic><jats:sub>d</jats:sub>’s) measured in the low nanomolar range via two independent methods. The aptamers were isolated from a library of single-stranded DNA molecules using a capture–systematic evolution of ligands by exponential enrichment (SELEX) technique and then adapted into structure-switching aptamer fluorescent sensors. Sensor performance was optimized for the detection of drug from human serum and crushed tablets, resulting in two sensing platforms. The patient sample platform was validated against an LC-MS standard drug detection method in samples from healthy volunteers and patients with malaria. This assay provides a rapid and inexpensive method for tracking antimalarial drug use and quality for the containment and study of parasite resistance, a major priority for malaria elimination campaigns. This sensor platform allows for flexibility of sample matrix and can be easily adapted to detect other small-molecule drugs.</jats:p>

Original publication

DOI

10.1126/scitranslmed.abe1535

Type

Journal

Science Translational Medicine

Publisher

American Association for the Advancement of Science (AAAS)

Publication Date

17/03/2021

Volume

13

Pages

eabe1535 - eabe1535