Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

As countries decide on vaccination strategies and how to ease movement restrictions, estimates of cumulative incidence of SARS-CoV-2 infection are essential in quantifying the extent to which populations remain susceptible to COVID-19. Cumulative incidence is usually estimated from seroprevalence data, where seropositives are defined by an arbitrary threshold antibody level, and adjusted for sensitivity and specificity at that threshold. This does not account for antibody waning nor for lower antibody levels in asymptomatic or mildly symptomatic cases. Mixture modelling can estimate cumulative incidence from antibody-level distributions without requiring adjustment for sensitivity and specificity. To illustrate the bias in standard threshold-based seroprevalence estimates, we compared both approaches using data from several Kenyan serosurveys. Compared to the mixture model estimate, threshold analysis underestimated cumulative incidence by 31% (IQR: 11 to 41) on average. Until more discriminating assays are available, mixture modelling offers an approach to reduce bias in estimates of cumulative incidence. One-Sentence Summary Mixture models reduce biases inherent in the standard threshold-based analysis of SARS-CoV-2 serological data.

Original publication

DOI

10.1101/2021.04.09.21254250

Type

Publication Date

2021