Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BackgroundAcute respiratory distress syndrome (ARDS) is currently diagnosed by the Berlin Definition. Diagnosis is subjective and often late. Untargeted metabolomics analysis of exhaled breath with gas chromatography and mass spectrometry (GC-MS) showed that the breath concentration of octane has a high diagnostic accuracy for ARDS. To facilitate rapid bedside measurement of this biomarker, a point-of-care (POC) breath test was developed. A prototype already showed good reproducibility and repeatability for the detection of octane. In this study we aim to measure octane in exhaled breath of invasively ventilated intensive care unit (ICU) patients and validate the diagnostic accuracy of the breath test for the early diagnosis of ARDS.MethodsThis is a multicentre observational cohort study in patients admitted to the ICU receiving invasive ventilation for at least 24 hours. At least 500 patients in two academic hospitals in The Netherlands will be included. ARDS patients will be compared to patients without ARDS. ARDS diagnosis will be based on the Berlin Definition. Two diagnostic assessments will be performed during the first 72 hours of invasive ventilation, including breath sampling, arterial blood gas analysis and lung ultrasound (LUS). In patients fulfilling the criteria for ARDS, three additional breath samples will be taken to assess resolution. The primary endpoint is the diagnostic accuracy for ARDS, defined by the area under the receiver operating characteristics curve (AUROCC) of octane concentration in exhaled breath. Secondary endpoints are the association between exhaled breath octane and ARDS adjusted for confounders, and the added diagnostic accuracy of the breath test on top of the Lung Injury Prediction Score (LIPS).DiscussionThis is the first study that validates a metabolic biomarker of ARDS in an adequate sample size. The major novelty is the use of a POC breath test that has been specifically developed for the purpose of diagnosing ARDS. Strengths are; assessment in the early phase, in patients at risk for ARDS, longitudinal sampling and an expert panel to reliably diagnose ARDS. This study will provide a decisive answer on the question if exhaled breath metabolomics can be used to diagnose ARDS.Trial registrationThe trial is registered at (ID: NL8226) with the tag "DARTS".

Original publication





Annals of translational medicine

Publication Date





Department of Intensive Care, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands.