Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The bat connection The heterogeneity of COVID-19 makes it challenging to predict the course of infection in an individual. Upon virus infection, interferons (IFNs) generate the initial signals for cellular defenses. Knowing that defects in IFN signaling are associated with more severe COVID-19, Wickenhagen et al . used IFN-stimulated gene expression screening on human lung cells from which they identified a gene for 2′-5′-oligoadenylate synthetase 1 (OAS1) (see the Perspective by Schoggins). OAS1 stimulates RNase L to inhibit the virus with a surprising degree of specificity, targeting the membranous organelles in which it replicates. In most mammals, OAS1 is attached to membranes by a prenyl group. However, billions of humans do not have the prenylated OAS1 haplotype, including many experiencing severe COVID-19. The same is true for horseshoe bats, prolific sources of betacoronaviruses, because of an ancient retrotransposition event. —CA

Original publication

DOI

10.1126/science.abj3624

Type

Journal

Science

Publisher

American Association for the Advancement of Science (AAAS)

Publication Date

29/10/2021

Volume

374