Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BackgroundNeutralizing antibodies develop in natural HIV-1 infection. Their development often takes several years and may rely on chronic virus exposure. At the same time recent studies show that treatment early in infection may provide opportunities for immune preservation. However, it is unknown how intermittent treatment in early infection affects development of the humoral immune response over time. We investigate the effect of cART in early HIV infection on the properties of the memory B cell compartment following 6 months of cART or in the absence of treatment. The patients included participated in the Primo-SHM trial where patients with an early HIV-1 infection were randomized to no treatment or treatment for 24 or 60 weeks.MethodsPrimo-SHM trial patients selected for the present study were untreated (n = 23) or treated for 24 weeks (n = 24). Here we investigate memory B cell properties at viral set-point and at a late time point (respectively median 54 and 73 weeks) before (re)-initiation of treatment.ResultsAt viral set-point, the memory B cell compartment in treated patients demonstrated significantly lower fractions of antigen-primed, activated, memory B cells (p = 0.006). In contrast to untreated patients, in treated patients the humoral HIV-specific response reached a set point over time. At a transcriptional level, sets of genes that showed enhanced expression in memory B cells at viral setpoint in untreated patients, conversely showed rapid increase of expression of the same genes in treated patients at the late time point.ConclusionThese data suggest that, although the memory B cell compartment is phenotypically preserved until viral setpoint after treatment interruption, the development of the HIV-specific antibody response may benefit from exposure to HIV. The effect of viral exposure on B cell properties is also reflected by longitudinal changes in transcriptional profile in memory B cells over time in early treated patients.

Original publication

DOI

10.1371/journal.pone.0173577

Type

Journal

PloS one

Publication Date

01/2017

Volume

12

Addresses

Department of Internal Medicine, Academic Medical Center, Amsterdam, the Netherlands.

Keywords

B-Lymphocytes, Humans, HIV-1, HIV Infections, Flow Cytometry, Gene Expression Profiling, Immunologic Memory, Transcription, Genetic, Adult, Middle Aged