Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BackgroundGenetic markers like the nuclear ribosomal RNA (rRNA) genes, internal transcribed spacer regions, mitochondrial protein-coding genes, and genomes have been utilized for molecular identification of parasitic trematodes. However, challenges such as the design of broadly applicable primers for the vast number of species within Digenea and the genetic markers' ability to provide sufficient species-level resolution limited their utility. This study presented novel and broadly applicable primers using the mitochondrial 12S and 16S rRNA genes for Digenea and aimed to show their suitability as alternative genetic markers for molecular identification of orders Plagiorchiida, Echinostomida, and Strigeida.ResultsOur results revealed that the mitochondrial 12S and 16S rRNA genes are suitable for trematode molecular identification, with sufficient resolution to discriminate closely related species and achieve accurate species identification through phylogenetic placements. Moreover, the robustness of our newly designed primers to amplify medically important parasitic trematodes encompassing three orders was demonstrated through successful amplification. The convenience and applicability of the newly designed primers and adequate genetic variation of the mitochondrial rRNA genes can be useful as complementary markers for trematode molecular-based studies.ConclusionsWe demonstrated that the mitochondrial rRNA genes could be alternative genetic markers robust for trematode molecular identification and potentially helpful for DNA barcoding where our primers can be widely applied across the major Digenea orders. Furthermore, the potential of the mitochondrial rRNA genes for molecular systematics can be explored, enhancing their appeal for trematode molecular-based studies. The novelty of utilizing the mitochondrial rRNA genes and the designed primers in this study can potentially open avenues for species identification, discovery, and systematics in the future.

Original publication

DOI

10.1186/s12864-022-08302-4

Type

Journal

BMC genomics

Publication Date

07/02/2022

Volume

23

Addresses

Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.

Keywords

Animals, Trematoda, DNA, Mitochondrial, DNA, Ribosomal, RNA, Ribosomal, RNA, Ribosomal, 16S, Phylogeny, Genes, Mitochondrial, DNA Barcoding, Taxonomic