Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BackgroundRapid typing of Leptospira is currently impaired by requiring time consuming culture of leptospires. The objective of this study was to develop an assay that provides multilocus sequence typing (MLST) data direct from patient specimens while minimising costs for subsequent sequencing.Methodology and findingsAn existing PCR based MLST scheme was modified by designing nested primers including anchors for facilitated subsequent sequencing. The assay was applied to various specimen types from patients diagnosed with leptospirosis between 2014 and 2015 in the United Kingdom (UK) and the Lao Peoples Democratic Republic (Lao PDR). Of 44 clinical samples (23 serum, 6 whole blood, 3 buffy coat, 12 urine) PCR positive for pathogenic Leptospira spp. at least one allele was amplified in 22 samples (50%) and used for phylogenetic inference. Full allelic profiles were obtained from ten specimens, representing all sample types (23%). No nonspecific amplicons were observed in any of the samples. Of twelve PCR positive urine specimens three gave full allelic profiles (25%) and two a partial profile. Phylogenetic analysis allowed for species assignment. The predominant species detected was L. interrogans (10/14 and 7/8 from UK and Lao PDR, respectively). All other species were detected in samples from only one country (Lao PDR: L. borgpetersenii [1/8]; UK: L. kirschneri [1/14], L. santarosai [1/14], L. weilii [2/14]).ConclusionTyping information of pathogenic Leptospira spp. was obtained directly from a variety of clinical samples using a modified MLST assay. This assay negates the need for time-consuming culture of Leptospira prior to typing and will be of use both in surveillance, as single alleles enable species determination, and outbreaks for the rapid identification of clusters.

Original publication





PLoS neglected tropical diseases

Publication Date





Public Health England (PHE), National Infection Service (NIS), London, United Kingdom.