Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Studies of successive vaccination suggest that immunological memory against past influenza viruses may limit responses to vaccines containing current strains. The impact of memory induced by prior infection is rarely considered and is difficult to ascertain, because infections are often subclinical. This study investigated influenza vaccination among adults from the Ha Nam cohort (Vietnam), who were purposefully selected to include 72 with and 28 without documented influenza A(H3N2) infection during the preceding 9 years (Australian New Zealand Clinical Trials Registry 12621000110886). The primary outcome was the effect of prior influenza A(H3N2) infection on hemagglutinin-inhibiting antibody responses induced by a locally available influenza vaccine administered in November 2016. Baseline and postvaccination sera were titrated against 40 influenza A(H3N2) strains spanning 1968-2018. At each time point (baseline, day 14 and day 280), geometric mean antibody titers against 2008-2018 strains were higher among participants with recent infection (34 (29-40), 187 (154-227) and 86 (72-103)) than among participants without recent infection (19 (17-22), 91 (64-130) and 38 (30-49)). On days 14 and 280, mean titer rises against 2014-2018 strains were 6.1-fold (5.0- to 7.4-fold) and 2.6-fold (2.2- to 3.1-fold) for participants with recent infection versus 4.8-fold (3.5- to 6.7-fold) and 1.9-fold (1.5- to 2.3-fold) for those without. One of 72 vaccinees with recent infection versus 4 of 28 without developed symptomatic A(H3N2) infection in the season after vaccination (P = 0.021). The range of A(H3N2) viruses recognized by vaccine-induced antibodies was associated with the prior infection strain. These results suggest that recall of immunological memory induced by prior infection enhances antibody responses to inactivated influenza vaccine and is important to attain protective antibody titers.

Original publication





Nature medicine

Publication Date





363 - 372


Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.