Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Spreading depression (SD) was studied with intracellular and extracellular recordings and with photometry in slices of rat hippocampus. Repetitive electrical stimulation could initiate SD in either normal medium or in low-Ca2+ medium containing Mn2+, especially during transient hypoxia. The extracellular voltage near CA1 pyramidal somata and dendrites became negative by approximately 18 mV during SD. This negativity peaked more slowly in low-Ca2+ medium containing Mn2+. The wave of negativity propagated across the slice in both media at approximately 6 mm/min. Input resistance of pyramidal neurons became undetectable during SD, and differential voltage recording between neurons and adjacent extracellular space demonstrated that transmembrane potential approached zero. Slices became more opaque during SD. Photometry revealed approximately 10% increase in reflectance and a similar decrease in transmittance of white light, which occurred with a time course similar to the extracellularly recorded voltage shift. These data support the hypothesis that SD represents a large increase in membrane permeability associated with substantial movements of water. The persistance of SD in a bathing solution that blocked electrically evoked postsynaptic potentials suggests that the contribution of synaptic transmitter release to the propagation of SD should be reappraised.

Original publication

DOI

10.1152/jn.1983.50.3.561

Type

Journal

Journal of neurophysiology

Publication Date

09/1983

Volume

50

Pages

561 - 572

Keywords

Hippocampus, Synapses, Animals, Rats, Inbred Strains, Rats, Calcium, Manganese, Synaptic Transmission, Membrane Potentials, Electric Conductivity, Models, Neurological, Female, Male, Cortical Spreading Depression, In Vitro Techniques