Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

This study demonstrates experimentally a method to enable prediction of depth of a chemical species buried in a turbid medium by using transmission Raman spectroscopy alone. The method allows the prediction of the depth of a single, chemically distinct layer within a turbid matrix by performing two measurements, with and without a beam enhancing element, or "photon diode." The samples employed consisted of two different polymers, of total thickness 3.6 mm, whose optical properties are loosely relevant to pharmaceutical applications. A polymer layer of low-density polyethylene (LDPE) was placed at different positions within multiple layers of the polytetrafluoroethylene (PTFE) matrix and Raman spectra were recorded in each case. Both univariate and multivariate analyses were utilized to determine whether the depth of the LDPE layer could be predicted using the obtained data. The best-achieved RMSE of prediction was 4.2% of the total sample size (i.e., +/- 0.15 mm) with the multivariate approach.

Original publication

DOI

10.1177/0003702817691540

Type

Journal

Applied spectroscopy

Publication Date

08/2017

Volume

71

Pages

1849 - 1855

Addresses

1 School of Physics and Astronomy, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK.