Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

This study demonstrates how transmission Raman spectroscopy can be used in the quantitative, non-invasive probing of the bulk content of production line relevant pharmaceutical products contained within capsules with a strong interfering Raman signal (principally TiO(2)). This approach is particularly beneficial in situations where the conventional Raman backscattering method is hampered or fails due to excessive Raman or fluorescence signals emanating from surface layers (capsule or coating) that pollute the much weaker subsurface Raman signals. In these feasibility experiments the interfering surface Raman signal was effectively suppressed, relative to the Raman signal of the internal content, by a factor of 33, in the transmission geometry in comparison with the conventional backscattering Raman approach. In conjunction with the superior bulk probing ability of the transmission Raman geometry, which effectively removes the sub-sampling problem inherent to conventional Raman spectroscopy, and multivariate analysis (principal component analysis (PCA), partial least squares (PLS) and classical least squares (CLS) regression), this provides an analytical tool well suited for rapid control monitoring applications in the pharmaceutical industry. The measured relative root mean square error of prediction (RMSEP) of the concentration of the active pharmaceutical ingredient (API) was 1.2 and 1.8% with 5 and 1s acquisition times, respectively.

Original publication

DOI

10.1016/j.jpba.2008.01.013

Type

Journal

Journal of pharmaceutical and biomedical analysis

Publication Date

06/2008

Volume

47

Pages

221 - 229

Addresses

Central Laser Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire, UK.

Keywords

Pharmaceutical Preparations, Capsules, Spectrum Analysis, Raman, Feasibility Studies, Evaluation Studies as Topic