Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

UV-vis absorption and resonance Raman spectra of the complexes fac-[Re(Cl)(CO)3(stpy)2] and fac-[Re(stpy)(CO)3(bpy)]+ (stpy = t-4-styrylpyridine, bpy = 2,2'-bipyridine) show that their lowest absorption bands are dominated by stpy-localized intraligand (IL) pi pi* transitions. For the latter complex a Re --> bpy transition contributes to the low-energy part of the absorption band. Optical population of the 1IL excited state of fac-[Re(Cl)(CO)3(stpy)2] is followed by an intersystem crossing (< or =0.9 ps) to an 3IL state with the original planar trans geometry of the stpy ligand. This state undergoes a approximately 90 degrees rotation around the stpy C=C bond with a 11 ps time constant. An electronically excited species with an approximately perpendicular orientation of the phenyl and pyridine rings of the stpy ligand is formed. Conversion to the ground state and isomerization occurs in the nanosecond range. Intraligand excited states of fac-[Re(stpy)(CO)3(bpy)]+ show the same behavior. Moreover, it was found that the planar reactive 3IL excited state is rapidly and efficiently populated after optical excitation into the Re --> bpy 1MLCT excited state. A 1MLCT --> 3MLCT intersystem crossing takes place first with a time constant of 0.23 ps followed by an intramolecular energy transfer from the ReI(CO)3(bpy) chromophore to a stpy-localized 3IL state with a 3.5 ps time constant. The fast rate ensures complete conversion. Coordination of the stpy ligand to the ReI center thus switches the ligand trans-cis isomerization mechanism from singlet to triplet (intramolecular sensitization) and, in the case of fac-[Re(stpy)(CO)3(bpy)]+, opens an indirect pathway for population of the reactive 3IL excited state via MLCT states.

Original publication

DOI

10.1021/jp044753+

Type

Journal

The journal of physical chemistry. A

Publication Date

04/2005

Volume

109

Pages

3000 - 3008

Addresses

Department of Chemistry and Centre for Materials Research, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom.

Keywords

Styrenes, Organometallic Compounds, Pyridines, Ligands, Spectrum Analysis, Molecular Structure, Kinetics, Isomerism, Time Factors