Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Access to healthcare is imperative to health equity and well-being. Geographic access to healthcare can be modeled using spatial datasets on local context, together with the distribution of existing health facilities and populations. Several population datasets are currently available, but their impact on accessibility analyses is unknown. In this study, we model the geographic accessibility of public health facilities at 100-meter resolution in sub-Saharan Africa and evaluate six of the most popular gridded population datasets for their impact on coverage statistics at different administrative levels. Travel time to nearest health facilities was calculated by overlaying health facility coordinates on top of a friction raster accounting for roads, landcover, and physical barriers. We then intersected six different gridded population datasets with our travel time estimates to determine accessibility coverages within various travel time thresholds (i.e., 30, 60, 90, 120, 150, and 180-min). Here we show that differences in accessibility coverage can exceed 70% at the sub-national level, based on a one-hour travel time threshold. The differences are most notable in large and sparsely populated administrative units and dramatically shape patterns of healthcare accessibility at national and sub-national levels. The results of this study show how valuable and critical a comparative analysis between population datasets is for the derivation of coverage statistics that inform local policies and monitor global targets. Large differences exist between the datasets and the results underscore an essential source of uncertainty in accessibility analyses that should be systematically assessed.

Original publication

DOI

10.1038/s43856-022-00179-4

Type

Journal

Communications medicine

Publication Date

01/2022

Volume

2

Addresses

GeoHealth group, Institute of Global Health, Faculty of Medicine, University of Geneva, Geneva, Switzerland.