Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Cardiovascular diseases (CVDs) are the leading cause of mortality globally with almost a third of all annual deaths worldwide. Low- and middle-income countries (LMICs) are disproportionately highly affected covering 80% of these deaths. For CVD, hypertension (HTN) is the leading modifiable risk factor. The comparative impact of diagnostic interventions that improve either the accuracy, the reach, or the completion of HTN screening in comparison to the current standard of care has not been estimated. METHODS AND FINDINGS: This microsimulation study estimated the impact on HTN-induced morbidity and mortality in LMICs for four different scenarios: (S1) lower HTN diagnostic accuracy; (S2) improved HTN diagnostic accuracy; (S3) better implementation strategies to reach more persons with existing tools; and, lastly, (S4) the wider use of easy-to-use tools, such as validated, automated digital blood pressure measurement devices to enhance screening completion, in comparison to the current standard of care (S0). Our hypothetical population was parametrized using nationally representative, individual-level HPACC data and the global burden of disease data. The prevalence of HTN in the population was 31% out of which 60% remained undiagnosed. We investigated how the alteration of a yearly blood pressure screening event impacts morbidity and mortality in the population over a period of 10 years. The study showed that while improving test accuracy avoids 0.6% of HTN-induced deaths over 10 years (13,856,507 [9,382,742; 17,395,833]), almost 40 million (39,650,363 [31,34,233, 49,298,921], i.e., 12.7% [9.9, 15.8]) of the HTN-induced deaths could be prevented by increasing coverage and completion of a screening event in the same time frame. Doubling the coverage only would still prevent 3,304,212 million ([2,274,664; 4,164,180], 12.1% [8.3, 15.2]) CVD events 10 years after the rollout of the program. Our study is limited by the scarce data available on HTN and CVD from LMICs. We had to pool some parameters across stratification groups, and additional information, such as dietary habits, lifestyle choice, or the blood pressure evolution, could not be considered. Nevertheless, the microsimulation enabled us to include substantial heterogeneity and stochasticity toward the different income groups and personal CVD risk scores in the model. CONCLUSIONS: While it is important to consider investing in newer diagnostics for blood pressure testing to continuously improve ease of use and accuracy, more emphasis should be placed on screening completion.

Original publication

DOI

10.1371/journal.pmed.1004111

Type

Journal

PLoS Med

Publication Date

12/2022

Volume

19