Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Abstract Background Microscopic examination is commonly used for malaria diagnosis in the field. However, the lack of well-trained microscopists in malaria-endemic areas impacted the most by the disease is a severe problem. Besides, the examination process is time-consuming and prone to human error. Automated diagnostic systems based on machine learning offer great potential to overcome these problems. This study aims to evaluate Malaria Screener, a smartphone-based application for malaria diagnosis. Methods A total of 190 patients were recruited at two sites in rural areas near Khartoum, Sudan. The Malaria Screener mobile application was deployed to screen Giemsa-stained blood smears. Both expert microscopy and nested PCR were performed to use as reference standards. First, Malaria Screener was evaluated using the two reference standards. Then, during post-study experiments, the evaluation was repeated for a newly developed algorithm, PlasmodiumVF-Net. Results Malaria Screener reached 74.1% (95% CI 63.5–83.0) accuracy in detecting Plasmodium falciparum malaria using expert microscopy as the reference after a threshold calibration. It reached 71.8% (95% CI 61.0–81.0) accuracy when compared with PCR. The achieved accuracies meet the WHO Level 3 requirement for parasite detection. The processing time for each smear varies from 5 to 15 min, depending on the concentration of white blood cells (WBCs). In the post-study experiment, Malaria Screener reached 91.8% (95% CI 83.8–96.6) accuracy when patient-level results were calculated with a different method. This accuracy meets the WHO Level 1 requirement for parasite detection. In addition, PlasmodiumVF-Net, a newly developed algorithm, reached 83.1% (95% CI 77.0–88.1) accuracy when compared with expert microscopy and 81.0% (95% CI 74.6–86.3) accuracy when compared with PCR, reaching the WHO Level 2 requirement for detecting both Plasmodium falciparum and Plasmodium vivax malaria, without using the testing sites data for training or calibration. Results reported for both Malaria Screener and PlasmodiumVF-Net used thick smears for diagnosis. In this paper, both systems were not assessed in species identification and parasite counting, which are still under development. Conclusion Malaria Screener showed the potential to be deployed in resource-limited areas to facilitate routine malaria screening. It is the first smartphone-based system for malaria diagnosis evaluated on the patient-level in a natural field environment. Thus, the results in the field reported here can serve as a reference for future studies.

Original publication

DOI

10.1186/s12936-023-04446-0

Type

Journal

Malaria Journal

Publisher

Springer Science and Business Media LLC

Publication Date

27/01/2023

Volume

22