Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Abstract Objectives We investigated longitudinally Vietnamese small-scale chicken flocks in order to characterize changes in antimicrobial resistance gene (ARG) content over their life cycle, and the impact of antimicrobial use (AMU) on an intervention consisting of veterinary advice provision. Methods AMU data and faecal samples were collected from 83 flocks (25 farms) at day-old, mid- and late-production (∼4 month cycle). Using high-throughput real-time PCR, samples were investigated for 94 ARGs. ARG copies were related to 16S rRNA and ng of DNA (ngDNA). Impact of AMU and ARGs in day-olds was investigated by mixed-effects models. Results Flocks received a mean (standard error, SE) animal daily dose (ADD) of 736.7 (83.0) and 52.1 (9.9) kg in early and late production, respectively. Overall, ARGs/16S rRNA increased from day-old (mean 1.47; SE 0.10) to mid-production (1.61; SE 0.16), further decreasing in end-production (1.60; SE 0.1) (all P > 0.05). In mid-production, ARGs/16S rRNA increased for aminoglycosides, phenicols, sulphonamides and tetracyclines, decreasing for polymyxins β-lactams and genes that confer resistance to mutiple classes (multi-drug resistance) (MDR). At end-production, aminoglycoside resistance decreased and polymyxin and quinolone resistance increased (all P < 0.05). Results in relation to ngDNA gave contradictory results. Neither AMU nor ARGs in day-olds had an impact on subsequent ARG abundance. The intervention resulted in 74.2% AMU reduction; its impact on ARGs depended on whether ARGs/ngDNA (+14.8%) or ARGs/16S rRNA metrics (−10.7%) (P > 0.05) were computed. Conclusions The flocks’ environment (contaminated water, feed and residual contamination) is likely to play a more important role in transmission of ARGs to flocks than previously thought. Results highlight intriguing differences in the quantification of ARGs depending on the metric chosen.

Original publication

DOI

10.1093/jacamr/dlad090

Type

Journal

JAC-Antimicrobial Resistance

Publisher

Oxford University Press (OUP)

Publication Date

11/07/2023

Volume

5