Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Background: Given the low levels of coronavirus disease 2019 (COVID-19) vaccine coverage in sub-Saharan Africa (sSA), despite high levels of natural severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) exposures, strategies for extending the breadth and longevity of naturally acquired immunity are warranted. Designing such strategies will require a good understanding of natural immunity. Methods: We measured whole-spike immunoglobulin G (IgG) and spike-receptor binding domain (RBD) total immunoglobulins (Igs) on 585 plasma samples collected longitudinally over five successive time points within six months of COVID-19 diagnosis in 309 COVID-19 patients. We measured antibody-neutralising potency against the wild-type (Wuhan) SARS-CoV-2 pseudovirus in a subset of 51 patients over three successive time points. Binding and neutralising antibody levels and potencies were then tested for correlations with COVID-19 severities. Results: Rates of seroconversion increased from day 0 (day of PCR testing) to day 180 (six months) (63.6% to 100 %) and (69.3 % to 97%) for anti-spike-IgG and anti-spike-RBD binding Igs, respectively. Levels of these binding antibodies peaked at day 28 (p<0.0001) and were subsequently maintained for six months without significant decay (p>0.99). Similarly, antibody-neutralising potencies peaked at day 28 (p<0.0001) but declined by three-fold, six months after COVID-19 diagnosis (p<0.0001). Binding antibody levels were highly correlated with neutralising antibody potencies at all the time points analysed (r>0.6, p<0.0001). Levels and potencies of binding and neutralising antibodies increased with disease severity. Conclusions: Most COVID-19 patients generated SARS-CoV-2 specific binding antibodies that remained stable in the first six months of infection. However, the respective neutralising antibodies decayed three-fold by month-six of COVID-19 diagnosis suggesting that they are short-lived, consistent with what has been observed elsewhere in the world. Thus, regular vaccination boosters are required to sustain the high levels of anti-SARS-CoV-2 naturally acquired neutralising antibody potencies in our population.

Original publication

DOI

10.12688/wellcomeopenres.19414.1

Type

Journal

Wellcome Open Research

Publisher

F1000 Research Ltd

Publication Date

17/08/2023

Volume

8

Pages

350 - 350