Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Growth studies rely on longitudinal measurements, typically represented as trajectories. However, anthropometry is prone to errors that can generate outliers. While various methods are available for detecting outlier measurements, a gold standard has yet to be identified, and there is no established method for outlying trajectories. Thus, outlier types and their effects on growth pattern detection still need to be investigated. This work aimed to assess the performance of six methods at detecting different types of outliers, propose two novel methods for outlier trajectory detection and evaluate how outliers affect growth pattern detection. METHODS: We included 393 healthy infants from The Applied Research Group for Kids (TARGet Kids!) cohort and 1651 children with severe malnutrition from the co-trimoxazole prophylaxis clinical trial. We injected outliers of three types and six intensities and applied four outlier detection methods for measurements (model-based and World Health Organization cut-offs-based) and two for trajectories. We also assessed growth pattern detection before and after outlier injection using time series clustering and latent class mixed models. Error type, intensity, and population affected method performance. RESULTS: Model-based outlier detection methods performed best for measurements with precision between 5.72-99.89%, especially for low and moderate error intensities. The clustering-based outlier trajectory method had high precision of 14.93-99.12%. Combining methods improved the detection rate to 21.82% in outlier measurements. Finally, when comparing growth groups with and without outliers, the outliers were shown to alter group membership by 57.9 -79.04%. CONCLUSIONS: World Health Organization cut-off-based techniques were shown to perform well in few very particular cases (extreme errors of high intensity), while model-based techniques performed well, especially for moderate errors of low intensity. Clustering-based outlier trajectory detection performed exceptionally well across all types and intensities of errors, indicating a potential strategic change in how outliers in growth data are viewed. Finally, the importance of detecting outliers was shown, given its impact on children growth studies, as demonstrated by comparing results of growth group detection.

Original publication





BMC Med Res Methodol

Publication Date





Clustering, Growth measurements, Growth outliers, Trajectories