Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Antibiotic tolerance in Mycobacterium tuberculosis leads to less effective bacterial killing, poor treatment responses and resistant emergence. There is limited understanding of antibiotic tolerance in clinical isolates of M. tuberculosis . Therefore, we investigated the rifampicin tolerance of M. tuberculosis isolates, with or without pre-existing isoniazid-resistance. In-vitro rifampicin survival fractions determined by minimum duration of killing assay in isoniazid susceptible (n=119) and resistant (n=84) M. tuberculosis isolates. Rifampicin tolerance was correlated with bacterial growth, rifampicin minimum inhibitory concentrations (MICs) and isoniazid-resistant mutations. The longitudinal isoniazid-resistant isolates were analyzed for rifampicin tolerance based on collection time from patients and associated emergence of genetic variants. The median duration of rifampicin exposure reducing the M. tuberculosis surviving fraction by 90% (minimum duration of killing-MDK90) increased from 1.23 (95%CI 1.11; 1.37) and 1.31 (95%CI 1.14; 1.48) to 2.55 (95%CI 2.04; 2.97) and 1.98 (95%CI 1.69; 2.56) days, for IS and IR respectively, during 15 to 60 days of incubation respectively. Increase in MDK90 time indicated the presence of fast and slow growing tolerant sub-populations. A range of 6 log 10 -fold survival fraction enabled classification of tolerance as low, medium or high and revealed isoniazid-resistance association with increased tolerance with faster growth (OR=2.68 for low vs. medium, OR=4.42 for low vs. high, P -trend=0.0003). The high tolerance in longitudinal isoniazid-resistant isolates was specific to those collected during rifampicin treatment in patients and associated with bacterial genetic microvariants. Our study identifies a range of rifampicin tolerance and reveals that isoniazid resistance is associated with higher tolerance with growth fitness. Furthermore, rifampicin treatment may select isoniazid-resistant isolate microvariants with higher rifampicin tolerance, with survival potential similar to multi-drug resistant isolates. These findings suggest that isoniazid-resistant tuberculosis needs to be evaluated for rifampicin tolerance or needs further improvement in treatment regimen.

Original publication

DOI

10.1101/2023.11.22.568240

Type

Journal

bioRxiv

Publication Date

22/11/2023