Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Disease surveillance aims to collect data at different times or locations, to assist public health authorities to respond appropriately. Surveillance of the simian malaria parasite, Plasmodium knowlesi , is sparse in some endemic areas and the spatial extent of transmission is uncertain. Zoonotic transmission of Plasmodium knowlesi has been demonstrated throughout Southeast Asia and represents a major hurdle to regional malaria elimination efforts. Given an arbitrary spatial prediction of relative disease risk, we develop a flexible framework for surveillance site selection, drawing on principles from multi-criteria decision-making. To demonstrate the utility of our framework, we apply it to the case study of Plasmodium knowlesi malaria surveillance site selection in western Indonesia. We demonstrate how statistical predictions of relative disease risk can be quantitatively incorporated into public health decision-making, with specific application to active human surveillance of zoonotic malaria. This approach can be used in other contexts to extend the utility of modelling outputs.

Original publication

DOI

10.1098/rsos.230641

Type

Journal

Royal Society Open Science

Publisher

The Royal Society

Publication Date

01/2024

Volume

11