Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

SARS-CoV-2 has gradually acquired amino acid substitutions in its S protein that reduce the potency of neutralizing antibodies, leading to decreased vaccine efficacy. Here, we attempted to obtain mutant viruses by passaging SARS-CoV-2 in the presence of plasma samples from convalescent patients or vaccinees to determine which amino acid substitutions affect the antigenicity of SARS-CoV-2. Several amino acid substitutions in the S2 region, as well as the N-terminal domain (NTD) and receptor-binding domain (RBD), affected the neutralization potency of plasma samples collected from vaccinees, indicating that amino acid substitutions in the S2 region as well as those in the NTD and RBD affect neutralization by vaccine-induced antibodies. Furthermore, the neutralizing potency of vaccinee plasma samples against mutant viruses we obtained or circulating viruses differed among individuals. These findings suggest that genetic backgrounds of vaccinees influence the recognition of neutralizing epitopes.

Original publication

DOI

10.1016/j.isci.2023.107208

Type

Journal

iScience

Publication Date

07/2023

Volume

26

Addresses

Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.