Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BackgroundTyphoid and paratyphoid fevers represent a global health burden, especially in Southern Asia, exacerbated by the increase in antimicrobial resistance. While vaccines against Salmonella Typhi have been successfully introduced, a vaccine against S. Paratyphi A is not available, yet. Efforts to develop an effective vaccine targeting both Salmonella serovars are currently ongoing. GVGH is developing a bivalent vaccine constituted by the Vi-CRM197 typhoid conjugate vaccine (TCV), and the Salmonella Paratyphi A O-antigen (O:2), also conjugated to the CRM197 carrier protein (O:2-CRM197). In this work we have characterized a panel of S. Paratyphi A clinical isolates from endemic regions, differing in terms of their O:2 structural features.MethodsRabbits were immunized with the S. Paratyphi A component of the vaccine candidate and the resulting sera were tested for their ability to bind and kill the isolates using flow cytometry and luminescence-based serum bactericidal assay (L-SBA).ResultsThe O:2-CRM197 glycoconjugate induced a functional immune response in rabbits, effectively binding and killing a diverse panel of clinical isolates. The sera demonstrated bactericidal activity independent of the O:2 structural variations, including differences in O-acetylation and glucosylation levels. Additionally, the study found that the O:2-CRM197 conjugate's adsorption to Alhydrogel did not significantly impact its immunogenicity or bactericidal efficacy.ConclusionsThe O:2-CRM197 component of the bivalent vaccine candidate shows promise in providing broad protection against S. Paratyphi A isolates, regardless of their O-antigen structural variations. The ongoing clinical studies on human sera are expected to confirm these results.

Original publication

DOI

10.3390/vaccines13020122

Type

Journal

Vaccines

Publication Date

01/2025

Volume

13

Addresses

GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy.