Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We compared the abilities of different Salmonella enterica var. Typhimurium (S. typhimurium) strains harboring mutations in the genes aroA, aroAD, purA, ompR, htrA, and cya crp to present the heterologous antigen, C fragment of tetanus toxin, to the mouse immune system. Plasmid pTETtac4, encoding C fragment, was transferred into the various S. typhimurium mutants, and the levels of antigen expression were found to be equivalent. After primary oral immunization of BALB/c mice, all attenuated strains were capable of penetrating the gut epithelium and colonizing the Peyer's patches and spleens of mice. Of all strains compared, the delta purA mutant colonized and persisted in the Peyer's patches at the lowest level, whereas the delta htrA mutant colonized and persisted in the spleen at the lowest level. The level of specific antibody elicited by the different strains against either S. typhimurium lipopolysaccharide or tetanus toxoid was strain dependent and did not directly correlate to the mutants' ability to colonize the spleen. The level of immunoglobulin G1 (IgG1) and IgG2a antibody specific for tetanus toxoid was determined in mice immunized with four S. typhimurium mutants. The level of antigen-specific IgG1 and IgG2a was significantly lower in animals immunized with S. typhimurium delta purA. Antigen-specific T-cell proliferation assays indicated a degree of variability in the capacity of some strains to elicit T cells to the heterologous antigen. Cytokine profiles (gamma interferon and interleukin-5) revealed that the four S. typhimurium mutants tested induced a Th1-type immune response. Mice were challenged with a lethal dose of tetanus toxin 96 days after oral immunization. With the exception of the S. typhimurium delta purA mutant, all strains elicited a protective immune response. These data indicate that the level of total Ig specific for the carried antigen, C fragment, does not correlate with the relative invasiveness of the vector, but it is determined by the carrier mutation and the background of the S. typhimurium strain.

Type

Journal

Infection and immunity

Publication Date

02/1998

Volume

66

Pages

732 - 740

Addresses

Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia. s.dunstan@pgrad.unimelb.edu.au

Keywords

Animals, Mice, Inbred BALB C, Mice, Salmonella typhimurium, Immunoglobulin G, Bacterial Vaccines, Tetanus Toxoid, Vaccines, Attenuated, Antibodies, Bacterial, Immunization, Lymphocyte Activation, Mutation, Female, Interferon-gamma