Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

<jats:title>ABSTRACT</jats:title><jats:p>The emergence of drug-resistant parasites is a serious threat faced by malaria control programs. Understanding the genetic basis of resistance is critical to the success of treatment and intervention strategies. A novel locus associated with antimalarial resistance,<jats:italic>ap2-mu</jats:italic>(encoding the mu chain of the adaptor protein 2 [AP2] complex), was recently identified in studies on the rodent malaria parasite<jats:named-content xmlns:xlink="http://www.w3.org/1999/xlink" content-type="genus-species" xlink:type="simple">Plasmodium chabaudi</jats:named-content>(<jats:italic>pcap2-mu</jats:italic>). Furthermore, analysis in Kenyan malaria patients of polymorphisms in the<jats:named-content xmlns:xlink="http://www.w3.org/1999/xlink" content-type="genus-species" xlink:type="simple">Plasmodium falciparum</jats:named-content><jats:italic>ap2-mu</jats:italic>homologue,<jats:italic>pfap2-mu</jats:italic>, found evidence that differences in the amino acid encoded by codon 160 are associated with enhanced parasite survival<jats:italic>in vivo</jats:italic>following combination treatments which included artemisinin derivatives. Here, we characterize the role of<jats:italic>pfap2-mu</jats:italic>in mediating the<jats:italic>in vitro</jats:italic>antimalarial drug response of<jats:named-content xmlns:xlink="http://www.w3.org/1999/xlink" content-type="genus-species" xlink:type="simple">P. falciparum</jats:named-content>by generating transgenic parasites constitutively expressing codon 160 encoding either the wild-type Ser (Ser160) or the Asn mutant (160Asn) form of<jats:italic>pfap2-mu</jats:italic>. Transgenic parasites carrying the<jats:italic>pfap2-mu</jats:italic>160Asn allele were significantly less sensitive to dihydroartemisinin using a standard 48-h<jats:italic>in vitro</jats:italic>test, providing direct evidence of an altered parasite response to artemisinin. Our data also provide evidence that<jats:italic>pfap2-mu</jats:italic>variants can modulate parasite sensitivity to quinine. No evidence was found that<jats:italic>pfap2-mu</jats:italic>variants contribute to the slow-clearance phenotype exhibited by<jats:named-content xmlns:xlink="http://www.w3.org/1999/xlink" content-type="genus-species" xlink:type="simple">P. falciparum</jats:named-content>in Cambodian patients treated with artesunate monotherapy. These findings provide compelling evidence that<jats:italic>pfap2-mu</jats:italic>can modulate<jats:named-content xmlns:xlink="http://www.w3.org/1999/xlink" content-type="genus-species" xlink:type="simple">P. falciparum</jats:named-content>responses to multiple drugs. We propose that this gene should be evaluated further as a potential molecular marker of antimalarial resistance.</jats:p>

Original publication

DOI

10.1128/aac.04067-14

Type

Journal

Antimicrobial Agents and Chemotherapy

Publisher

American Society for Microbiology

Publication Date

05/2015

Volume

59

Pages

2540 - 2547