Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

<jats:sec><jats:title>Background</jats:title><jats:p>Poor quality medicines have devastating consequences. A plethora of innovative portable devices to screen for poor quality medicines has become available, leading to hope that they could empower medicine inspectors and enhance surveillance. However, information comparing these new technologies is woefully scarce.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>We undertook a systematic review of Embase, PubMed, Web of Science and SciFinder databases up to 30 April 2018. Scientific studies evaluating the performances/abilities of portable devices to assess any aspect of the quality of pharmaceutical products were included.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>Forty-one devices, from small benchtop spectrometers to ‘lab-on-a-chip’ single-use devices, with prices ranging from &lt;US$10 to &gt;US$20 000, were included. Only six devices had been field-tested (GPHF-Minilab, CD3/CD3+, TruScan RM, lateral flow dipstick immunoassay, CBEx and Speedy Breedy). The median (range) number of active pharmaceutical ingredients (APIs) assessed per device was only 2 (1–20). The majority of devices showed promise to distinguish genuine from falsified medicines. Devices with the potential to assay API (semi)-quantitatively required consumables and were destructive (GPHF-Minilab, PharmaChk, aPADs, lateral flow immunoassay dipsticks, paper-based microfluidic strip and capillary electrophoresis), except for spectroscopic devices. However, the 10 spectroscopic devices tested for their abilities to quantitate APIs required processing complex API-specific calibration models. Scientific evidence of the ability of the devices to accurately test liquid, capsule or topical formulations, or to distinguish between chiral molecules, was limited. There was no comment on cost-effectiveness and little information on where in the pharmaceutical supply chain these devices could be best deployed.</jats:p></jats:sec><jats:sec><jats:title>Conclusion</jats:title><jats:p>Although a diverse range of portable field detection devices for medicines quality screening is available, there is a vitally important lack of independent evaluation of the majority of devices, particularly in field settings. Intensive research is needed in order to inform national medicines regulatory authorities of the optimal choice of device(s) to combat poor quality medicines.</jats:p></jats:sec>

Original publication

DOI

10.1136/bmjgh-2018-000725

Type

Journal

BMJ Global Health

Publisher

BMJ

Publication Date

08/2018

Volume

3

Pages

e000725 - e000725