Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

AbstractLarge-scale surveillance of mosquito populations is crucial to assess the intensity of vector-borne disease transmission and the impact of control interventions. However, there is a lack of accurate, cost-effective and high-throughput tools for mass-screening of vectors. This study demonstrates proof-of-concept that near-infrared spectroscopy (NIRS) is capable of rapidly identifying laboratory strains of human malaria infection in African mosquito vectors. By using partial least square regression models based on malaria-infected and uninfected Anopheles gambiae mosquitoes, we showed that NIRS can detect oocyst- and sporozoite-stage Plasmodium falciparum infections with 88% and 95% accuracy, respectively. Accurate, low-cost, reagent-free screening of mosquito populations enabled by NIRS could revolutionize surveillance and elimination strategies for the most important human malaria parasite in its primary African vector species. Further research is needed to evaluate how the method performs in the field following adjustments in the training datasets to include data from wild-caught infected and uninfected mosquitoes.

Original publication

DOI

10.1101/533802

Type

Publication Date

02/02/2019