Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The solution conformation of a cyclic RGD peptide analogue, cyclo-(S,S)-2-mercaptobenzoate-arginine-glycine-aspartate-2-mer captoanilide, has been determined via two independent approaches for the searching of conformational space and identification of conformations consistent with NMR and CD spectroscopic data: (i) the use of a binary genetic algorithm and (ii) a molecular dynamics simulation. Inter-proton distances were obtained via analysis of cross-peak volumes from a two-dimensional ROESY NMR spectroscopy experiment at 600 MHz and were used as constraints for the computational calculations. The mercaptoanilide amide proton resonance chemical shift had a very small temperature coefficient, indicating that this proton was hydrogen-bonded. Circular dichroism data showed that, in solution, the torsion angle about the disulfide bond was negative, consistent with one of the distinct conformations around this bond in the 200 ps molecular dynamics simulation. The backbone conformations of the structures resulting from the two different approaches were very similar.



International journal of peptide and protein research

Publication Date





588 - 596


Department of Physical Sciences, Wellcome Research Laboratories, Beckenham, Kent, UK.


Amides, Dimethyl Sulfoxide, Peptides, Cyclic, Oligopeptides, Solutions, Circular Dichroism, Magnetic Resonance Spectroscopy, Drug Stability, Temperature, Amino Acid Sequence, Protein Conformation, Thermodynamics, Models, Genetic, Models, Chemical, Molecular Sequence Data