Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

A specialist technique used to study drugs has been completed for the first time during an outbreak of Ebola virus disease.

Researcher wearing a mask © Dr Thomas Massaquoi of 34 Military Hospital, Trials Clinician: RAPIDE-TKM trial team

The study published in eBiomedicine was a collaboration of researchers from Sierra Leone and the Universities of Glasgow, Oxford, Cambridge and the Liverpool School of Tropical Medicine. It used pharmacokinetics – the measurement of the change in drug concentration in a person over time – to study an experimental drug called TKM-130803 for the treatment of Ebola virus disease during the 2015 outbreak in Sierra Leone.

Although treatment with TKM-130803 did not appear to improve survival, possibly because the patients presented with advanced disease, the research team were able to use pharmacokinetic analyses to gain important new insights.

In the study, the researchers measured the concentration of the drug over time in patients with Ebola. The scientists looked at the relationship between drug and Ebola virus concentrations and used the data to conduct computer simulations to answer important questions about what would happen if the dose and timing of drug administration were altered.

Significant findings were that the amount of virus (the ‘viral load’) was not significantly different in patients who lived or died, and that the concentration of drug was higher in those who died than in those who survived.

Dr Janet Scott, Clinical Lecturer in Infectious Diseases at the University of Glasgow-MRC Centre for Virus Research, said: “The field team successfully gathered data and samples under extremely difficult conditions, right in the middle of the largest ever outbreak of Ebola Virus Disease in 2015. Rather than focus only on whether we could show that the drug worked or not, we were also able to study how the drug concentrations changed with time in patients. With this we were able to make a mathematical model, and predict what would probably have happened if we had used another dose.

“We had worried, that the dose chosen for this study might have been too low, but this analysis was able to show us that our caution had been justified, and that pushing the dose even higher would probably not have been safe. This reminds us that caution is important, especially when treating these extremely unwell patients.”

Dr Raman Sharma, senior post-doctoral research associate, Liverpool School of Tropical Medicine,  said: “We have been able to show that even with data from very few patients, this kind of research is worth that extra effort, and can yield useful and important results, pushing our understanding of the drug and the dose beyond what can be learnt in the laboratory.”

The laboratory analysis inside the Ebola Treatment Unit was led by Dr Luc Meredith Senior Post Doctoral Scientist, University of Cambridge. He said: “It was difficult to remain accurate and keep the team safe, particularly in the excessive heat of northern Sierra Leone – but this needs to be done if we are to learn everything we can about Ebola and whatever new virus emerges next.”

Professor Peter Horby, Professor of Emerging Infectious Diseases and Global Health, University of Oxford said: “An important lesson is that pharmacokinetic analyses are  possible even in very challenging settings and such analyses can provide important insights. This may be especially valuable in small or very quick outbreaks where there may be too few patients enrolled in trials to provide definitive proof of clinical impact. In such circumstance we can still measure the relationship between drug concentrations and virus concentrations, or other markers of disease progression, to give us an idea if the dose is adequate and drug is having an effect.”

The study, Pharmacokinetics of TKM-130803 in Ebola virus disease in Sierra Leonean: patients showed plasma concentrations which exceeded target levels, with accumulation of drug in patients with most severe disease, is published in eBiomedicine. The work was funded by Wellcome and the EU FP7 project PREPARE.

Similar stories

The RECOVERY Trial: One year on

OCGHR Research

The Randomised Evaluation of COVid-19 thERapY (RECOVERY) trial was officially launched on 23 March 2020. It is the world's largest COVID-19 drug trial. Thanks to the ground-breaking work of RECOVERY, clinicians treating patients hospitalised with severe COVID-19 now have two treatments that are known to improve survival.

Researchers call for access to Ivermectin for young children

OCGHR Publication Research

Millions of children weighing less than 15kg are currently denied access to Ivermectin treatment due to insufficient safety data being available to support a change to the current label indication. The WorldWide Antimalarial Resistance Network’s new meta-analysis provides evidence that supports removing this barrier and improving treatment equity.

Gender imbalance in visceral leishmaniasis clinical trials

OCGHR Publication Research

Researchers have found that despite an ongoing trend for a decreasing proportion of males being enrolled in antileishmanial therapeutic efficacy trials over time, there are still 1.8 times as many males as females involved in clinical trials. A new systematic review and meta-analysis suggests that existing knowledge on drug efficacy is derived from a study population that is heavily skewed towards adult males. At the same time, substantially less is known about the optimal treatment response in female patients.

New report highlights growing concern of vaccine falsification

MORU OCGHR

The Medicine Quality Research Group has published a new Medical Product Quality Report focussing on increasing issues around substandard and falsified (SF) COVID-19 vaccines. With the implementation of the key innovations of COVID-19 vaccines, there have been growing numbers of reports of SF vaccines in the public domain. Given the vital role they will play in ending the pandemic and protecting the global population but severe issues with equitable access, SF vaccines are highly likely to be a growing problem.

RECOVERY trial closes recruitment to colchicine treatment for patients hospitalised with COVID-19

OCGHR Research

Established to test a range of potential treatments for COVID-19, the RECOVERY trial has included a comparison of colchicine, an anti-inflammatory drug that is commonly used to treat gout, vs. usual care alone. There has been no convincing evidence of the effect of colchicine on clinical outcomes in patients admitted to hospital with COVID-19, and recruitment to the colchicine arm of the RECOVERY trial has now closed. Recruitment to all other treatment arms – aspirin, baricitinib, Regeneron’s antibody cocktail, and dimethyl fumarate – continues as planned.

World’s largest clinical trial for COVID-19 treatments expands internationally

EOCRU OCGHR OUCRU OUCRU-Nepal Research

The Randomised Evaluation of COVID-19 Therapy (RECOVERY) Trial, the world’s largest clinical trial for COVID-19 treatments, has now expanded internationally with Indonesia and Nepal among the first countries to join. The first patients have been recruited to RECOVERY International.